[1] Y.M. Huang, Y.H. Dong, S. Li, J. Lee, C. Wang, Z. Zhu, W.J. Xue, Y. Li, J.Li, Lithium Manganese spinel cathodes for lithium-ion batteries, Adv. Energy Mater. 11 (2) (2021) 2000997. [2] M.X. Lin, L.B. Ben, Y. Sun, H. Wang, Z.Z. Yang, L. Gu, X.Q. Yu, X.Q. Yang, H.F. Zhao, R.C. Yu, M. Armand, X.J.Huang, Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle, Chem. Mater. 27 (1) (2015) 292–303. [3] F. Wang, L.M. Suo, Y.J. Liang, C.Y. Yang, F.D. Han, T. Gao, W. Sun, C.S.Wang, Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries, Adv. Energy Mater. 7 (8) (2017) 1600922. [4] Y.C. Lyu, X. Wu, K. Wang, Z.J. Feng, T. Cheng, Y. Liu, M. Wang, R.M. Chen, L.M. Xu, J.J. Zhou, Y.H. Lu, B.K.Guo, An overview on the advances of LiCoO2 cathodes for lithium-ion batteries, Adv. Energy Mater. 11 (2) (2021) 2000982. [5] Q. Xu, X.F. Li, H.M. Kheimeh Sari, W.B. Li, W. Liu, Y.C. Hao, J. Qin, B. Cao, W. Xiao, Y. Xu, Y. Wei, L. Kou, Z.Y. Tian, L. Shao, C. Zhang, X.L.Sun, Surface engineering of LiNi0.8Mn0.1Co0.1O2 towards boosting lithium storage: Bimetallic oxides versus monometallic oxides, Nano Energy 77 (2020) 105034. [6] Hongyuan, Zhao, Environment-friendly synthesis of high-voltage LiNi0.5Mn1.5O4 nanorods with excellent electrochemical properties, Ceram. Int. 44 (16) (2018) 20575–20580. [7] Qiwen, Ran, Enhancing surface stability of LiNi0.8Co0.1Mn0.1O2 cathode with hybrid core-shell nanostructure induced by high-valent titanium ions for Li-ion batteries at high cut-off voltage, J. Alloys Compd. 834 (2020) 155099. [8] Jingkun, Li, Past and present of LiFePO4: from fundamental research to industrial applications, Chem 5 (1) (2019) 3–6. [9] Lei, Zhang, Degradation characteristics investigation for lithium-ion cells with NCA cathode during overcharging, Appl. Energy 327 (2022) 120026. [10] Hongyuan, Zhao, Significantly enhanced electrochemical properties of LiMn2O4-based composite microspheres embedded with nano-carbon black particles, J. Mater. Res. Technol. 9 (4) (2020) 7027–7033. [11] Hongyuan, Zhao, Low-cost and eco-friendly synthesis of octahedral LiMn2O4 cathode material with excellent electrochemical performance, Ceram. Int. 45 (14) (2019) 17183–17191. [12] Hongyuan, Zhao, Spray-drying synthesis of LiMnO2@VXC-72R composite microspheres with excellent electrochemical performance, Ceram. Int. 46 (13) (2020) 21805–21809. [13] J. Lee, D.A. Kitchaev, D.H. Kwon, C.W. Lee, J.K. Papp, Y.S. Liu, Z.Y. Lun, R.J. Clément, T. Shi, B.D. McCloskey, J.H. Guo, M. Balasubramanian, G.Ceder, Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials, Nature 556 (7700) (2018) 185–190. [14] B. Kang, G.Ceder, Battery materials for ultrafast charging and discharging, Nature 458 (7235) (2009) 190–193. [15] X.W. Yu, W.A. Yu, A. Manthiram, Advances and prospects of high-voltage spinel cathodes for lithium-based batteries, Small Methods 5 (5) (2021) e2001196. [16] W. Lee, S. Muhammad, C. Sergey, H. Lee, J. Yoon, Y.M. Kang, W.S.Yoon, Advances in the cathode materials for lithium rechargeable batteries, Angew. Chem. Int. Ed. 59 (7) (2020) 2578–2605. [17] R. Santhanam, B.Rambabu, Research progress in high voltage spinel LiNi0.5Mn1.5O4 material, J. Power Sources 195 (17) (2010) 5442–5451. [18] G.Q. Liu, L. Wen, Y.M. Liu, Spinel LiNi0.5Mn1.5O4 and its derivatives as cathodes for high-voltage Li-ion batteries, J. Solid State Electrochem.14 (12) (2010) 2191–2202. [19] F.X. Mao, W. Guo, J.M.Ma, Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes, RSC Adv. 5 (127) (2015) 105248–105258. [20] Jin, Chong, Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithium ion batteries, Nano Energy 2 (2) (2013) 283–293. [21] S.R. Li, C.H. Chen, J.R.Dahn, Studies of LiNi0.5Mn1.5O4 as a positive electrode for Li-ion batteries: M3+ Doping (M = Al, Fe, Co and Cr), electrolyte salts and LiNi0.5Mn1.5O4/Li4Ti5O12 Cells, J. Electrochem. Soc. 160 (11) (2013) A2166–A2175. [22] Q.W. Ran, H.Y. Zhao, Y.Z. Hu, S. Hao, Q.Q. Shen, J.T. Liu, H. Li, Y. Xiao, L. Li, L.P. Wang, X.Q.Liu, Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage, ACS Appl. Mater. Interfaces 12 (8) (2020) 9268–9276. [23] J. Mao, K.H. Dai, M.J. Xuan, G.S. Shao, R.M. Qiao, W.L. Yang, V.S. Battaglia, G.Liu, Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material, ACS Appl. Mater. Interfaces 8 (14) (2016) 9116–9124. [24] S.D. Zhang, Y. Liu, M.Y. Qi, A.M.Cao, Localized surface doping for improved stability of high energy cathode materials, Acta Phys. Chimica Sin. (2020) 2011007–. [25] V. Mereacre, N. Bohn, P. Stüble, L. Pfaffmann, J.R.Binder, Instantaneous surface Li3PO4 coating and Al-Ti doping and their effect on the performance of LiNi0.5Mn1.5O4 cathode materials, ACS Appl. Energy Mater. 4 (5) (2021) 4271–4276. [26] Min-Cheol, Kim, Chemical valence electron-engineered LiNi0.4Mn1.5MtO4 (Mt = Co and Fe) cathode materials with high-performance electrochemical properties, Appl. Surf. Sci. 504 (2020) 144514. [27] Shiyou, Li, Synergism of Cu and Al co-doping on improvements of structural integrity and electrochemical performance for LiNi0.5Mn1.5O4, J. Alloys Compd. 820 (2020) 153140. [28] M.H. Liu, H.T. Huang, C.M. Lin, J.M. Chen, S.C.Liao, Mg gradient-doped LiNi0.5Mn1.5O4 as the cathode material for Li-ion batteries, Electrochimica Acta 120 (2014) 133–139. [29] G.M. Liang, Z.B. Wu, C. Didier, W.C. Zhang, J. Cuan, B.H. Li, K.Y. Ko, P.Y. Hung, C.Z. Lu, Y.Z. Chen, G. Leniec, S.M. Kaczmarek, B. Johannessen, L. Thomsen, V.K. Peterson, wei kong Pang, Z.P.Guo, A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping, Angew. Chem. 132 (26) (2020) 10681–10689. [30] Z. Yang, Y. Jiang, J.H. Kim, Y. Wu, G.L. Li, Y.H.Huang, The LiZnxNi0.5-xMn1.5O4 spinel with improved high voltage stability for Li-ion batteries, Electrochimica Acta 117 (2014) 76–83. [31] J. Wang, P. Nie, G.Y. Xu, J.M. Jiang, Y.T. Wu, R.R. Fu, H. Dou, X.G.Zhang, High-voltage LiNi0.45Cr0.1Mn1.45O4 cathode with superlong cycle performance for wide temperature lithium-ion batteries, Adv. Funct. Mater. 28 (4) (2018) 1704808. [32] A.Y. Chen, L.L. Kong, Y. Shu, W.C. Yan, W. Wu, Y.J. Xu, H.T. Gao, Y.C.Jin, Role of Al-doping with different sites upon the structure and electrochemical performance of spherical LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries, RSC Adv. 9 (22) (2019) 12656–12666. [33] Hongyuan, Zhao, Synergistic effects of zinc-doping and nano-rod morphology on enhancing the electrochemical properties of spinel Li-Mn-O material, Ceram. Int. 45 (14) (2019) 17591–17597. [34] Fangchang, Lin, Synergistic effect of Mg and Y co-dopants on enhancement of electrochemical properties of LiNi0.5Mn1.5O4 spinel, Electrochimica Acta 399 (2021) 139433. [35] F. Wu, Q. Li, L. Chen, Z.R. Wang, G. Chen, L.Y. Bao, Y. Lu, S. Chen, Y.F.Su, An optimized synthetic process for the substitution of cobalt in nickel-rich cathode materials, Acta Phys. Chimica Sin. (2020) 2007017–. [36] E. Talik, L. Lipińska, P. Zajdel, A. Załóg, M. Michalska, A.Guzik, Electronic structure and magnetic properties of LiMn1.5M0.5O4 (M=Al, Mg, Ni, Fe) and LiMn2O4/TiO2 nanocrystalline electrode materials, J. Solid State Chem. 206 (2013) 257–264. [37] Shuaipeng, Yan, From coating to doping: effect of post-annealing temperature on the alumina coating of LiNi0.5Mn1.5O4 cathode material, J. Solid State Chem. 306 (2022) 122765. [38] Xiang, Ji, in situ Sr2+-doped spinel LiNi0.5Mn1.5O4 cathode material for Li-ion batteries with high electrochemical performance and its impact on morphology, Ceram. Int. 47 (22) (2021) 32043–32052. [39] B.Y. Lee, C.T. Chu, M. Krajewski, M. Michalska, J.Y.Lin, Temperature-controlled synthesis of spinel lithium nickel Manganese oxide cathode materials for lithium-ion batteries, Ceram. Int. 46 (13) (2020) 20856–20864. [40] Z.L. Yu, H. Huang, Y.J. Liu, X.Y. Qu, Y. Zhou, A.C. Dou, M.R. Su, H.H. Wu, L. Zhang, K.H. Dai, Z.P. Guo, T. Wan, M.Y. Li, D.W.Chu, Design and tailoring of carbon-Al2O3 double coated nickel-based cation-disordered cathodes towards high-performance Li-ion batteries, Nano Energy 96 (2022) 107071. [41] L. Wang, G.J. Liu, W. Wu, D. Chen, G.C.Liang, Synthesis of porous peanut-like LiNi0.5Mn1.5O4 cathode materials through an ethylene glycol-assisted hydrothermal method using urea as a precipitant, J. Mater. Chem. A 3 (38) (2015) 19497–19506. [42] H.P. Yang, H.H. Wu, M.Y. Ge, L.J. Li, Y.F. Yuan, Q. Yao, J. Chen, L.F. Xia, J.M. Zheng, Z.Y. Chen, J.F. Duan, K. Kisslinger, xiao cheng Zeng, W.K. Lee, Q.B. Zhang, J.Lu, Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries, Adv. Funct. Mater. 29 (13) (2019) 1808825. [43] Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J. Dahn, Synthesis and Electrochemistry of LiNixMn2-xO4, J. Electrochem. Soc., 144 (1997) 205. [44] X.Y. Qu, H. Huang, T. Wan, L. Hu, Z.L. Yu, Y.J. Liu, A.C. Dou, Y. Zhou, M.R. Su, X.Q. Peng, H.H. Wu, T. Wu, D.W.Chu, An integrated surface coating strategy to enhance the electrochemical performance of nickel-rich layered cathodes, Nano Energy 91 (2022) 106665. [45] K. Anulekha, Haridas, Caterpillar-like sub-micron LiNi0.5Mn1.5O4 structures with site disorder and excess Mn3+ as high performance cathode material for lithium ion batteries, Electrochimica Acta 212 (2016) 500–509. [46] M. Kunduraci, J.F. Al-Sharab, G.G.Amatucci, High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology, Chem. Mater. 18 (15) (2006) 3585–3592. [47] Yi-Jie, Gu, Comparison of Li/Ni antisite defects in Fd-3 m and P4332 nanostructured LiNi0.5Mn1.5O4 electrode for Li-ion batteries, Electrochimica Acta 213 (2016) 368–374. [48] Ying, Luo, Surface-segregated, high-voltage spinel lithium-ion battery cathode material LiNi0.5Mn1.5O4 cathodes by aluminium doping with improved high-rate cyclability, J. Alloys Compd. 703 (2017) 289–297. [49] B. Zong, Z.Y. Deng, S.H. Yan, Y.Q. Lang, J.J. Gong, J.L. Guo, L. Wang, G.C.Liang, Effects of Si doping on structural and electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries, Powder Technol. 364 (2020) 725–737. [50] G. Garhi, M. Aklalouch, C. Favotto, M. Mansori, I.Saadoune, Coprecipitation synthesis of Co-doped LiMn1.5Ni0.5O4 material as 5 V cathode of Li-ion batteries with huge rate capability for high power applications, J. Electroanal. Chem. 873 (2020) 114413. [51] G. Zhong, Y. Wang, Y. Yu, C. Chen, Electrochemical investigations of the LiNi0.45M0.10Mn1.45O4 (M = Fe, Co, Cr) 5 V cathode materials for lithium ion batteries, J. Power Sources 205 (2012) 385–393. [52] G.B. Zhong, Y.Y. Wang, Z.C. Zhang, C.H.Chen, Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4, Electrochimica Acta 56 (18) (2011) 6554–6561. |