[1] Unal, B. O,; Membrane autopsy study to characterize fouling type of RO membrane used in an industrial zone wastewater reuse plant, Desalination, 529 (2022) 115648. https://doi.org/10.1016/j.desal.2022.115648. [2] Moreira, V. R.; Lebron, Y. A. R.; Gontijo, D.; Amaral, M. C. S.; One-step recycling of mineral acid from concentrated gold mining wastewater by high-temperature liquid-liquid extraction, Sep. Purif. Technol., 286 (2022) 120447. https://doi.org/10.1016/j.seppur.2022.120447. [3] Jiang, D. M.; Gao, C. F.; Liu, L. F.; Yu, T. T.; Li, Y. H.; Wang, H. B.; Application of nanoporous ceramic membrane derived from Fe/S/Si/Al/O-rich mining solid waste in oil-water separation and heavy metal removal of industrial high concentrated emulsifying wastewater, Sep. Purif. Technol., 295 (2022) 121317.https://doi.org/10.1016/j.seppur.2022.121317. [4] Foureaux, A. F. S.; Moreira, V. R.; Lebron,Y. A. R.; Santos, L. V. S.; Amaral, M. C. S.; A sustainable solution for fresh-water demand in mining sectors:Process water reclamation from POX effluent by membrane distillation, Sep. Purif. Technol., 256 (2021) 117797. https://doi.org/10.1016/j.seppur.2020.117797. [5] Y. Liu, Y. Sun, Z. Peng, Evaluation of bipolar membrane electrodialysis for desalination of simulated salicylic acid wastewater, Desalination 537 (2022) 115866. [6] Dou, W. Y.; Hu, X. Y.; Kong, L. H.; Peng, X. J.; Wang, X. L.; Removal of Cl(-I) from strongly acidic wastewater using NaBiO3: A process of simultaneous oxidation and precipitation, Desalination, 491 (2020) 114566. https://doi.org/10.1016/j.desal.2020.114566. [7] Andrade, L. H.; Aguiar, A. O.; Pires, W. L.; Grossi, L. B.; Amaral, M. C. S.; Comprehensive bench- and pilot-scale investigation of NF for gold mining effluent treatment: Membrane performance and fouling control strategies, Sep. Purif. Technol., 174 (2017) 44-56. https://doi.org/10.1016/j.seppur.2016.09.048. [8] Rodriguez, M.; Luque, S.; Alvarez, J. R.; Coca, J.; A comparative study of reverse osmosis and freeze concentration for the removal of valeric acid from wastewaters, Desalination, 127 (2000) 1-11. https://doi.org/10.1016/s0011-9164(99)00187-3. [9] Mashhadikhan, S.; Amooghin, A. E.; Sanaeepur, H.; Shirazi, M. M. A.; A critical review on cadmium recovery from wastewater towards environmental sustainability, Desalination, 535 (2022) 115815. https://doi.org/10.1016/j.desal.2022.115815. [10] Li, Z. W.; Pan, E. Z.; Wang, J. X.; Lu, J. M.; Yang, J. H.; Preparation of ZSM-5 zeolite membrane and its application in desalination, CIESC J., 72 (2021) 5247-5246. https://doi.org/10.11949/0438-1157.20210527. [11] Chen, D.; Zhang, C. S.; Rong, H. W.; Zhao H, M.; Gou, S. Y.; Treatment of electroplating wastewater using the freezing method, Sep. Purif. Technol., 234 (2020) 116043. https://doi.org/10.1016/j.seppur.2019.116043. [12] Lopez, J.; Gibert, O.; Cortina, J. L.; Integration of membrane technologies to enhance the sustainability in the treatment of metal-containing acidic liquid wastes. An overview, Sep. Purif. Technol., 265 (2021) 118485. https://doi.org/10.1016/j.seppur.2021.118485. [13] T. Yun, J.W. Chung, S.Y. Kwak, Recovery of sulfuric acid aqueous solution from copper-refining sulfuric acid wastewater using nanofiltration membrane process, J. Environ. Manage. 223 (2018) 652-657. [14] Lopez, J.; Reig, M.; Vecino, X.; Gibert, O.; Cortina, J. L.; Comparison of acid-resistant ceramic and polymeric nanofiltration membranes for acid mine waterstreatment, Chem. Eng. J., 382 (2020) 122786. https://doi.org/10.1016/j.cej.2019.122786. [15] Y. Cao, J.Q. Luo, C.L. Chen, Y.H. Wan, Highly permeable acid-resistant nanofiltration membrane based on a novel sulfonamide aqueous monomer for efficient acidic wastewater treatment, Chem. Eng. J. 425 (2021) 131791. [16] R. Yao, Y. Peng, H.L. Song, C.Y. Zhu, P.Y. Wang, L. Kun, W.S. Yang, Rational design and fabrication of a novel acid-resistant UZM-5 zeolite membrane for pervaporation dehydration processes, Chem. Commun. 57 (75) (2021) 9574-9577. [17] Yang, J. H.; Li, L. Q.; Li, W. Z.; Wang, J. Q.; Chen, Z.; Yin, D. H.; Lu, J. M.; Zhang, Y. H.; Guo, C.; Tuning aluminum spatial distribution in ZSM-5 membranes: a new strategy to fabricate high performance and stable zeolite membranes for dehydration of acetic acid. Chem. Commun., 50 (2014) 14654-14657. https://doi.org/1039/c4cc04747h. [18] Wang, J. X.; Wang, L.; Li, L. Q.; Li, J. J.; Raza, W.; Lu, J. M.; Yang, J. H.; A green synthesis of MOR zeolite membranes by wet gel conversion for dehydration of water-acetic acid mixtures, Sep. Purif. Technol., 286 (2022) 120311. https://doi.org/10.1016/j.seppur.2021.120311. [19] Si, D. Y.; Zhu, M. H.; Sun, X. M.; Xue, M.; Li, Y. Q.; Wu, T.; Gui, T.; Kumakiri, I.; Chen, X. S.; Kita, H.; Formation process and pervaporation of high aluminum ZSM-5 zeolite membrane with fluoride-containing and organic template-free gel, Sep. Purif. Technol., 257 (2021) 117963. https://doi.org/10.1016/j.seppur.2020.117963. [20] Si, D. Y.; Zhu, M. H.; You, R. H.; Li, Y. Q.; Wu, T.; Gui, T.; Hu, N.; Kumakiri, I.; Chen, X. S.; Kita, H.; Influences of alkali metal fluoride and Si/Al ratio on preparation aluminum-rich ZSM-5 zeolite membrane without organic template, Micropor. Mesopor. Mater., 324 (2021) 111286. https://doi.org/10.1016/j.micromeso.2021.111286. [21] Liu, Z.; Feng, Y.; Li, H.; Li, H. S.; Efficient recovery of Ti, Fe and Mn based on the synergistic effect of acidic titanium dioxide wastewater and pyrolusite,J. Water Process. Eng. 45(2022)102484. https://doi.org/10.1016/j.jwpe.2021.102484. [22] Zou, D.; Li, H.; Chen, J.; Li, D. Q.; Recovery of scandium from spent sulfuric acid solution in titanium dioxide production using synergistic solvent extraction with D2EHPA and primary amine N1923, Hydrometallurgy, 197 (2020) 105463. https://doi.org/10.1016/j.hydromet.2020.105463. [23] Zou, D.; Chen, J.; Li, D.; Solvent extraction of titanium(IV) from sulfuric acid solution with Cyanex923 and its application in leach liquor of red mud, Sep.Purif. Technol., 277 (2021) 119470. https://doi.org/10.1016/j.seppur.2021.119470. [24] Li, X.; Qin, Y.; Liu, R.; Zhang, Y. P.; Yao, K.; Study on concentration of aqueous sulfuric acid solution by multiple-effect membrane distillation, Desalination,307 (2012) 34-41. https://doi.org/10.1016/j.desal.2012.08.023. [25] Namaghi,H.A.; Chenar, M. P.; Asl, A. H.; Esmaeili, M.; Pihlajamaki, A.; Kallioinen, M.; Manttari, M.; Ultra-desulfurization of sulfur recovery unit wastewaterusing thin film nanocomposite membrane, Sep. Purif. Technol., 221 (2019) 211-225. https://doi.org/10.1016/j.seppur.2019.03.096. [26] Hasanoglu, A.; Salt, Y.; Keleser, S.; Dincer, S.; The esterification of acetic acid with ethanol in a pervaporation membrane reactor, Desalination, 245 (2009) 662-669. https://doi.org/10.1016/j.desal.2009.02.034. [27] Reis, B. G.; Araujo, A. L. B.; Vieira, C. C.; Amaral, M. C. S.; Ferraz, H. C.; Assessing potential of nanofiltration for sulfuric acid plant effluent reclamation: Operational and economic aspects, Sep. Purif. Technol. 222 (2019) 369-380. https://doi.org/10.1016/j.seppur.2019.04.048. [28] Yan, Z. C.; Wu, X. W.; Zhu, B. H.; Li, Y.; Gui, T.; Li, Y. Q.; Zhu, M. H.; Chen, X.S.; Kita, H.; Improvement of esterification conversion by rapid pervaporation dehydration using a high-flux and acid-resistant MOR zeolite membrane, Sep. Purif. Technol. 286 (2022) 120415. https://doi.org/10.1016/j.seppur.2021.120415. [29] Zhang, J.; Jin, X.; Yang, C.; Efficient removal of organic pollutants in wastesulfuric acid by an advanced oxidation process using coconut shell-derived biochar to produce qualified poly aluminium sulfate, Sep. Purif. Technol., 293 (2022) 121057. https://doi.org/10.1016/j.seppur.2022.121057. [30] Schuster, J.; Ebin, B.; Investigation of indium and other valuable metals leaching from unground waste LCD screens by organic and inorganic acid leaching,Sep. Purif. Technol., 279 (2021) 119659. https://doi.org/10.1016/j.seppur.2021.119659. [31] Li, X.; Li, Z.; Binnemans, K.;Closed-loop process for recovery of metals from NdFeB magnets using a trichloride ionic liquid, Sep. Purif. Technol., 275 (2021) 119158. https://doi.org/10.1016/j.seppur.2021.119158. [32] Nakhjiri, A. T.; Sanaeepur, H.; Amooghin, A. E.; Shirazi, M. M. A.; Recovery of precious metals from industrial wastewater towards resource recovery and environmental sustainability: A critical review, Desalination, 527 (2022) 115510. https://doi.org/10.1016/j.desal.2021.115510. [33] Yu, M.; Noble, D. R.; Falconer, J. L.; Zeolite membranes: microstructure characterization and permeation mechanisms, Acc. Chem. Res, 44 (2011) 1196-1206.https://doi.org/10.1021/ar200083e. [34] Yu, L.; Al-Jariry, N.; Serikbayeva, T.; Hedlund. J.; Ultra-thin zeolite CHA and FAU membranes for desalination by pervaporation, Sep. Purif. Technol., 294 (2022) 121177. https://doi.org/10.1016/j.seppur.2022.121177. [35] Cao, Z.; Zeng, S. X.; Xu, Z.; Yang, S. W.; Gu, X. H.; Dong, J. H.; Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines, Sci. Adv., 4 (2018) eaau8634. https://doi.org/10.1126/sciadv.aau86. |