[1] R. Krishna, J.M. van Baten, Simulating the motion of gas bubbles in a liquid, Nature 398 (6724) (1999) 208. [2] N.K. Bigalke, L.I. Enstad, G. Rehder, G. Alendal, Terminal velocities of pure and hydrate coated CO2 droplets and CH4 bubbles rising in a simulated oceanic environment, Deep Sea Res. Part I Oceanogr. Res. Pap. 57 (9) (2010) 1102-1110. [3] J. Schmidt, R. Nassar, A. Lubbert, Local dispersion in the liquid phase of gas-liquid reactors, Chem. Eng. Sci. 47 (13-14) (1992) 3363-3370. [4] D. Ma, M.Y. Liu, Y.G. Zu, C. Tang, Two-dimensional volume of fluid simulation studies on single bubble formation and dynamics in bubble columns, Chem. Eng. Sci. 72 (2012) 61-77. [5] Y.J. Zhang, M.Y. Liu, Y.G. Xu, C. Tang, Three-dimensional volume of fluid simulations on bubble formation and dynamics in bubble columns, Chem. Eng. Sci. 73 (2012) 55-78. [6] Y.G. Xu, M.Y. Liu, C. Tang, Three-dimensional CFD-VOF-DPM simulations of effects of low-holdup particles on single-nozzle bubbling behavior in gas-liquid-solid systems, Chem. Eng. J. 222 (2013) 292-306. [7] R. Krishna, J.M. van Baten, M.I. Urseanu, J. Ellenberger, Rise velocity of single circular-cap bubbles in two-dimensional beds of powders and liquids, Chem. Eng. Process. Process. Intensif. 39 (5) (2000) 433-440. [8] D. Lohse, Bubble puzzles, Phys. Today 56 (2) (2003) 36-41. [9] L.S. Fan, K. Tsuchiya, Wake sizes, Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions, Elsevier, Amsterdam, 1990, pp.143-180. [10] M.K. Tripathi, K.C. Sahu, R. Govindarajan, Dynamics of an initially spherical bubble rising in quiescent liquid, Nat. Commun. 6 (2015) 6268. [11] D.M. Sharaf, A.R. Premlata, M.K. Tripathi, B. Karri, K.C. Sahu, Shapes and paths of an air bubble rising in quiescent liquids, Phys. Fluids 29 (12) (2017) 122140. [12] A.R. Premlata, M.K. Tripathi, K.C. Sahu, Dynamics of rising bubble inside a viscosity-stratified medium, Phys. Fluids 27 (7) (2015) 072105. [13] W.L. Shew, S. Poncet, J.F. Pinton, Force measurements on rising bubbles, J. Fluid Mech. 569 (2006) 51. [14] R. Zenit, J. Magnaudet, Path instability of rising spheroidal air bubbles: A shape controlled process, Phys. Fluids 20 (2008) 061702. [15] Y.J. Gu, Experimental study and numerical simulation of single bubble rising behaviour, Northeastern University, China, 2021, in Chinese. [16] C.R. Huang, L.L. Wang, X.P. Chen, X.J. Wei, J.Z. Liang, The rising behaviors of single bubbles in stagnant turpentine and pine resin solutions, Exp. Therm. Fluid Sci. 98 (2018) 170-180. [17] K. Ellingsen, F. Risso, On the rise of an ellipsoidal bubble in water: Oscillatory paths and liquid-induced velocity, J. Fluid Mech. 440 (2001) 235-268. [18] A. Tomiyama, G.P. Celata, S. Hosokawa, S. Yoshida, Terminal velocity of single bubbles in surface tension force dominant regime, Int. J. Multiph. Flow 28 (9) (2002) 1497-1519. [19] N. Mao, C. Kang, S. Teng, C. Mulbah, Quantitative characterization of bubble evolution in mineral oil for different air-injection nozzles, Asia Pac. J. Chem. Eng. 15 (3) (2020) e2446. [20] W.Q. Li, S.H. Jiao, K. Tang, Y.A. Yang, W.H. Qu, Experimental investigation on characteristic of single bubble motion in stagnant water, Atom. Energy. Sci. Technol. 54 (9) (2020) 1653-1659. [21] Y. Zhou, S.F. Zou, Y.D. Pu, Q.X. Xue, H. Liu, Terminal velocities and vortex dynamics of weakly compressible Rayleigh-Taylor Instability, AIP Adv. 12 (1) (2022) 015325. [22] W. Lauterborn, W. Hentschel, Cavitation bubble dynamics studied by high speed photography and holography: Part one, Ultrasonics 23 (6) (1985) 260-268. [23] R. O’Reilly Meehan, B. Donnelly, K. Nolan, T. Persoons, D.B. Murray, Flow structures and dynamics in the wakes of sliding bubbles, Int. J. Multiph. Flow 84 (2016) 145-154. [24] C. Brucker, Structure and dynamics of the wake of bubbles and its relevance for bubble interaction, Phys. Fluids 11 (7) (1999) 1781-1796. [25] C. Rlift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press, New York, 2005. [26] P.G. Saffman, On the rise of small air bubbles in water, J. Fluid Mech. 1 (3) (1956) 249-275. [27] P. Di Marco, W. Grassi, G. Memoli, Experimental study on rising velocity of nitrogen bubbles in FC-72, Int. J. Therm. Sci. 42 (5) (2003) 435-446. [28] Y. Shibahata, K. Shimada, T. Tomari, Improvement of vehicle maneuverability by direct yaw moment control, Veh. Syst. Dyn. 22 (5-6) (1993) 465-481. [29] Y.L. Ma, M.Y. Liu, Y. Zhang, Axial meso-scale modeling of gas-liquid-solid fluidized beds, Chem. Eng. Sci. 196 (2019) 188-201. [30] A.K.R. Salibindla, A.U.M. Masuk, S.Y. Tan, R. Ni, Lift and drag coefficients of deformable bubbles in intense turbulence determined from bubble rise velocity, J. Fluid Mech. 894 (2020) A20. [31] J.W. Strutt, B. Rayleigh, The Theory of Sound, Macmillan and Co., London, 1877, Vol. 1. [32] R. O’Reilly Meehan, K. Grennan, I. Davis, K. Nolan, D.B. Murray, Visualization of the wake behind a sliding bubble, Phys. Rev. Fluids 2 (10) (2017) 104303. [33] L. Liu, H.J. Yan, G.J. Zhao, Experimental studies on the shape and motion of air bubbles in viscous liquids, Exp. Therm. Fluid Sci. 62 (2015) 109-121. [34] H.J. Yan, G.J. Zhao, L. Liu, J.H. Duan, Experimental study on shape and rising behavior of single bubble in stagnant water, J. Cent. South Univ. Sci. Technol. 47 (7) (2016) 2513-2520. [35] C.M. Ong, Dynamic Simulation of Electric Machinery: Using MATLAB/SIMULINK, Prentice Hall PTR, Upper Saddle River, NJ, 1998. |