[1] Y. Zhang, J.C. Lu, L.M. Zhang, T. Fu, J. Zhang, X. Zhu, X.Y. Gao, D.D. He, Y.M. Luo, D.D. Dionysiou, W.J. Zhu, Investigation into the catalytic roles of oxygen vacancies during gaseous styrene degradation process via CeO2 catalysts with four different morphologies, Appl. Catal. B Environ. 309 (2022) 121249. [2] A. Trovarelli, J. Llorca, Ceria catalysts at nanoscale: How do crystal shapes shape catalysis? ACS Catal. 7 (7) (2017) 4716-4735. [3] Y. Zhang, S.N. Zhao, J. Feng, S.Y. Song, W.D. Shi, D. Wang, H.J. Zhang, Unraveling the physical chemistry and materials science of CeO2-based nanostructures, Chem 7 (8) (2021) 2022-2059. [4] C.W. Sun, H. Li, L.Q. Chen, Nanostructured ceria-based materials: Synthesis, properties, and applications, Energy Environ. Sci. 5 (9) (2012) 8475-8505. [5] I. Graca, S. Al-Shihri, D. Chadwick, Selective oxidation of cyclohexane: Ce promotion of nanostructured manganese tungstate, Appl. Catal. A Gen. 568 (2018) 95-104. [6] D.D. Peng, Y. Zhang, G. Xu, Y. Tian, D. Ma, Y. Zhang, P. Qiu, Synthesis of multilevel structured MoS2@Cu/Cu2O@C visible-light-driven photocatalyst derived from MOF-guest polyhedra for cyclohexane oxidation, ACS Sustainable Chem. Eng. 8 (17) (2020) 6622-6633. [7] J.T. Grant, J.M. Venegas, W.P. McDermott, I. Hermans, Aerobic oxidations of light alkanes over solid metal oxide catalysts, Chem. Rev. 118 (5) (2018) 2769-2815. [8] N. Tsunoji, H. Nishida, Y. Ide, K. Komaguchi, S. Hayakawa, Y. Yagenji, M. Sadakane, T. Sano, Photocatalytic activation of C-H bonds by spatially controlled chlorine and titanium on the silicate layer, ACS Catal. 9 (6) (2019) 5742-5751. [9] X. Wang, S.A. Chen, Y.R. Ma, T.Y. Zhang, Y.J. Zhao, T.W. He, H. Huang, S.T. Zhang, J.F. Rong, C.F. Shi, K.J. Tang, Y. Liu, Z.H. Kang, Continuous homogeneous catalytic oxidation of C-H bonds by metal-free carbon dots with a poly(ascorbic acid) structure, ACS Appl. Mater. Interfaces (2022). [10] R. Goyal, B. Sarkar, S. Sameer, A. Bag, A. Bordoloi, Ag and WOx nanoparticles embedded in mesoporous SiO2 for cyclohexane oxidation, ACS Appl. Nano Mater. 2 (9) (2019) 5989-5999. [11] J.L. Yin, J.S. You, Concise synthesis of polysubstituted carbohelicenes by a C-H activation/radical reaction/C-H activation sequence, Angew. Chem. Int. Ed 58 (1) (2019) 302-306. [12] F. Jafarpour, M. Azizzade, Y. Golpazir-Sorkheh, H. Navid, S. Rajai-Daryasarei, Divergent synthesis of α-aroyloxy ketones and indenones: A controlled domino radical reaction for di- and trifunctionalization of alkynes, J. Org. Chem. 85 (12) (2020) 8287-8294. [13] N. Ahmed, R.J. Spears, T.D. Sheppard, V. Chudasama, Functionalisation of ethereal-based saturated heterocycles with concomitant aerobic C-H activation and C-C bond formation, Chem. Sci. 13 (29) (2022) 8626-8633. [14] S. Min, B. Park, J. Nedsaengtip, S.H. Hong, Mechanochemical direct fluorination of unactivated C(sp3)-H bonds, Adv. Synth. Catal. 364 (12) (2022) 1975-1981. [15] L. Mouheb, L. Dermeche, N. Essayem, C. Rabia, Keggin-type mixed polyoxomolybdates catalyzed cyclohexanone oxidation by hydrogen peroxide: In situ IR pyridine adsorption, Catal. Lett. 150 (11) (2020) 3327-3334. [16] B. Sudduth, D.M. Yun, J.M. Sun, Y. Wang, Facet-Dependent selectivity of CeO2 nanoparticles in 2-Propanol conversion, J. Catal. 404 (2021) 96-108. [17] L. Chen, Q.L. Wang, X.X. Wang, Q.L. Cong, H.Y. Ma, T.J. Guo, S.J. Li, W. Li, High-performance CeO2/halloysite hierarchical catalysts with promotional redox property and acidity for the selective catalytic reduction of NO with NH3, Chem. Eng. J. 390 (2020) 124251. [18] D. Xiangke Guo, M.X. Xu, M.Y. She, P. Yan Zhu, D. Taotao Shi, P. Zhaoxu Chen, P. Luming Peng, P. Xuefeng Guo, D. Ming Lin, P. Weiping Ding, Morphology-reserved synthesis of discrete nanosheets of CuO@SAPO-34 and pore mouth catalysis for one-pot oxidation of cyclohexane, Angew. Chem. Int. Ed. 59 (7) (2020) 2606-2611. [19] S.X. Chen, Y.W. Li, Z.C. Wang, Y. Jin, R.X. Liu, X.G. Li, Poly(ionic liquid)s hollow spheres nanoreactor for enhanced cyclohexane catalytic oxidation, J. Catal. 411 (2022) 135-148. [20] F.T. Liang, W.Z. Zhong, L.P. Xiang, L.Q. Mao, Q. Xu, S.R. Kirk, D.L. Yin, Synergistic hydrogen atom transfer with the active role of solvent: Preferred one-step aerobic oxidation of cyclohexane to adipic acid by N-hydroxyphthalimide, J. Catal. 378 (2019) 256-269. [21] J. Lei, W. Liu, Y. Jin, B.X. Li, Oxygen vacancy-dependent chemiluminescence: A facile approach for quantifying oxygen defects in ZnO, Anal. Chem. 94 (24) (2022) 8642-8650. [22] J.X. Zheng, R. Sun, D.P. Meng, J.X. Guo, Z. Wang, Boosting oxygen evolution reaction performance via metal defect-induced lattice oxygen redox reactions on spinel oxides, J. Mater. Chem. A 11 (27) (2023) 15044-15053. [23] R.Q. Zong, Y.G. Fang, C.R. Zhu, X. Zhang, L. Wu, X. Hou, Y.K. Tao, J. Shao, Surface defect engineering on perovskite oxides as efficient bifunctional electrocatalysts for water splitting, ACS Appl. Mater. Interfaces 13 (36) (2021) 42852-42860. [24] J.X. Zheng, X.F. Peng, Z. Xu, J.B. Gong, Z. Wang, Cationic defect engineering in spinel NiCo2O4 for enhanced electrocatalytic oxygen evolution, ACS Catal. 12 (16) (2022) 10245-10254. [25] L.R. Bao, S.H. Zhu, Y. Chen, Y. Wang, W.H. Meng, S. Xu, Z.H. Lin, X.Y. Li, M. Sun, L.M. Guo, Anionic defects engineering of Co3O4 catalyst for toluene oxidation, Fuel 314 (2022) 122774. [26] H.W. Chen, W. Cui, D.F. Li, Q.Q. Tian, J.J. He, Q. Liu, X. Chen, M.F. Cui, X. Qiao, Z.X. Zhang, J.H. Tang, Z.Y. Fei, Selectively etching lanthanum to engineer surface cobalt-enriched LaCoO3 perovskite catalysts for toluene combustion, Ind. Eng. Chem. Res. 59 (23) (2020) 10804-10812. [27] Z. Li, X.Y. Wang, M.L. Zeng, K.Y. Chen, D.H. Cao, Y.W. Huang, Y.Q. Zhu, W.H. Zhang, N.N. Wang, Y.A. Wu, The interplay between selective etching induced cation defects and active oxygen species for volatile organic compounds degradation, J. Colloid Interface Sci. 625 (2022) 363-372. [28] J.J. Liu, M.J. Hao, C.L. Chen, K.M. Du, Q.Y. Zhou, S.H. Zou, L.P. Xiao, J. Fan, Chlorinating CeO2 at surface oxygen vacancies to promote their selectivity in oxidative dehydrogenation of propane to propene, Appl. Surf. Sci. 528 (2020) 147025. [29] Y.W. Li, H. Li, K.X. Li, R.R. Wang, R.R. Zhang, R.X. Liu, Roles of oxygen vacancies in CeO2 nanostructures for catalytic aerobic cyclohexane oxidation, ACS Appl. Nano Mater. 6 (15) (2023) 14214-14227. [30] X.B. Huang, K.Y. Zhang, B.X. Peng, G. Wang, M. Muhler, F. Wang, Ceria-based materials for thermocatalytic and photocatalytic organic synthesis, ACS Catal. 11 (15) (2021) 9618-9678. [31] H.C. Zhang, C.S. Li, W.X. Liu, G.S. Luo, W.A. Goddard, M.J. Cheng, B.J. Xu, Q. Lu, Activation of light alkanes at room temperature and ambient pressure, Nat. Catal. 6 (2023) 666-675. [32] F. Esch, S. Fabris, L. Zhou, T. Montini, C. Africh, P. Fornasiero, G. Comelli, R. Rosei, Electron localization determines defect formation on ceria substrates, Science 309 (5735) (2005) 752-755. [33] G.E. Murgida, M. Veronica Ganduglia-Pirovano, Evidence for subsurface ordering of oxygen vacancies on the reduced CeO2(111) surface using density-functional and statistical calculations, Phys. Rev. Lett. 110 (24) (2013) 246101. [34] S. Torbrugge, M. Reichling, A. Ishiyama, S. Morita, O. Custance, Evidence of subsurface oxygen vacancy ordering on reduced CeO2(111), Phys. Rev. Lett. 99 (5) (2007) 056101. [35] X.Y. Zhang, P.F. Yang, Y.N. Liu, J.H. Pan, D.Q. Li, B. Wang, J.T. Feng, Support morphology effect on the selective oxidation of glycerol over AuPt/CeO2 catalysts, J. Catal. 385 (2020) 146-159. [36] Q. Zhang, S.P. Mo, B.X. Chen, W.X. Zhang, C.L. Huang, D.Q. Ye, Hierarchical Co3O4 nanostructures in situ grown on 3D nickel foam towards toluene oxidation, Mol. Catal. 454 (2018) 12-20. [37] F. Jiang, S.S. Wang, B. Liu, J. Liu, L. Wang, Y. Xiao, Y.B. Xu, X.H. Liu, Insights into the influence of CeO2Crystal facet on CO2 Hydrogenation to methanol over Pd/CeO2Catalysts, ACS Catal. 10 (19) (2020) 11493-11509. [38] Y. Xie, J.J. Chen, X. Wu, J.J. Wen, R. Zhao, Z.L. Li, G.C. Tian, Q.L. Zhang, P. Ning, J.M. Hao, Frustrated lewis pairs boosting low-temperature CO2 methanation performance over Ni/CeO2 nanocatalysts, ACS Catal. 12 (17) (2022) 10587-10602. [39] Z.H. Xie, J.P. Zhong, J.T. Tian, P. Liu, Q.M. Ren, L.M. Chen, M.L. Fu, D.Q. Ye, Unraveling the role of OH groups over CeO2 derived from methanol modification for enhancing toluene oxidation: Experimental and theoretical studies, Appl. Catal. A Gen. 654 (2023) 119069. [40] C. Lahousse, F. Mauge, J. Bachelier, J.C. Lavalley, Acidic and basic properties of titania-alumina mixed oxides; active sites for propan-2-ol dehydration, J. Chem. Soc., Faraday Trans. 91 (17) (1995) 2907-2912. [41] C.D. Baertsch, K.T. Komala, Y.H. Chua, E. Iglesia, Genesis of Broensted acid sites during dehydration of 2-butanol on tungsten oxide catalysts, J. Catal. 205 (1) (2002) 44-57. |