[1] A. Tgarguifa, S. Abderafi, T. Bounahmidi, Energetic optimization of Moroccan distillery using simulation and response surface methodology, Renew. Sustain. Energy Rev. 75 (2017) 415-425. [2] A.K. Jana, Advances in heat pump assisted distillation column: a review, Energy Convers. Manag. 77 (2014) 287-297. [3] N. Asprion, Modeling, simulation, and optimization 4.0 for a distillation column, Chem. Ing. Tech. 92 (7) (2020) 879-889. [4] M. Xu, F. Xin, X.F. Li, X.L. Huai, J.F. Guo, H. Liu, Equilibrium model and performances of an isopropanol-acetone-hydrogen chemical heat pump with a reactive distillation column, Ind. Eng. Chem. Res. 52 (11) (2013) 4040-4048. [5] X.G. Liu, L. Cong, Y.X. Zhou, Nonlinear model predictive control based on wave model of high-purity internal thermally coupled distillation columns, Ind. Eng. Chem. Res. 52 (19) (2013) 6470-6479. [6] S. Zendehboudi, N. Rezaei, A. Lohi, Applications of hybrid models in chemical, petroleum, and energy systems: a systematic review, Appl. Energy 228 (2018) 2539-2566. [7] J.A. Ramirez, R.J. Brown, T.J. Rainey, Liquefaction biocrudes and their petroleum crude blends for processing in conventional distillation units, Fuel Process. Technol. 167 (2017) 674-683. [8] M. Chen, P.L. Li, C. Hu, J.H. Luo, M. Wen, B. Yu, F. Jiang, Y.T. An, Y. Shi, J.F. Song, W.H. Luo, Dynamic simulation of a cryogenic batch distillation process for hydrogen isotopes separation, Int. J. Hydrog. Energy 47 (23) (2022) 11955-11961. [9] W.W. Li, B. Song, X.P. Li, Y.Z. Liu, Modelling of vacuum distillation in a rotating packed bed by Aspen, Appl. Therm. Eng. 117 (2017) 322-329. [10] Z.S. Hou, R.H. Chi, H.J. Gao, An overview of dynamic-linearization-based data-driven control and applications, IEEE Trans. Ind. Electron. 64 (5) (2017) 4076-4090. [11] Z.Q. Ge, Review on data-driven modeling and monitoring for plant-wide industrial processes, Chemom. Intell. Lab. Syst. 171 (2017) 16-25. [12] P. Behnam, M. Faegh, M. Khiadani, A review on state-of-the-art applications of data-driven methods in desalination systems, Desalination 532 (2022) 115744. [13] Z.L. Chen, Z. O’Neill, J. Wen, O. Pradhan, T. Yang, X. Lu, G.J. Lin, S. Miyata, S. Lee, C. Shen, R. Chiosa, M.S. Piscitelli, A. Capozzoli, F. Hengel, A. Kuhrer, M. Pritoni, W. Liu, J. Clauss, Y.M. Chen, T. Herr, A review of data-driven fault detection and diagnostics for building HVAC systems, Appl. Energy 339 (2023) 121030. [14] Z.T. Shao, Q.Z. Zhai, X.H. Guan, Physical-model-aided data-driven linear power flow model: an approach to address missing training data, IEEE Trans. Power Syst. 38 (3) (2023) 2970-2973. [15] G. Peters, F. Crespo, P. Lingras, R. Weber, Soft clustering-Fuzzy and rough approaches and their extensions and derivatives, Int. J. Approx. Reason. 54 (2) (2013) 307-322. [16] K. Jiang, M. Kheradmandi, C. Hu, S. Pal, F.J. Yan, Data-driven fault tolerant predictive control for temperature regulation in data center with rack-based cooling architecture, Mechatronics 79 (2021) 102633. [17] T.H. Pan, S.S. Shieh, S.S. Jang, W.H. Tseng, C.W. Wu, J.J. Ou, Statistical multi-model approach for performance assessment of cooling tower, Energy Convers. Manag. 52 (2) (2011) 1377-1385. [18] Y. Huang, G.P. Liu, W.S. Hu, Priori-guided and data-driven hybrid model for wind power forecasting, ISA Trans. 134 (2023) 380-395. [19] S. Zeng, Z.Y. Wang, R. Huang, L. Chen, D. Feng, A study on multi-kernel intuitionistic fuzzy C-means clustering with multiple attributes, Neurocomputing 335 (2019) 59-71. [20] R.Y. Zhang, Z. Chen, S. Chen, J.W. Zheng, O. Buyukozturk, H. Sun, Deep long short-term memory networks for nonlinear structural seismic response prediction, Comput. Struct. 220 (2019) 55-68. [21] Y. Choi, N. An, S. Hong, H. Cho, J. Lim, I.S. Han, I. Moon, J. Kim, Time-series clustering approach for training data selection of a data-driven predictive model: Application to an industrial bio 2, 3-butanediol distillation process, Comput. Chem. Eng. 161 (2022) 107758. [22] Q.F. Chen, M.C. Xia, Y. Zhou, H.M. Cai, J.Z. Wu, H.B. Zhang, Optimal planning for partially self-sufficient microgrid with limited annual electricity exchange with distribution grid, IEEE Access 7 (2019) 123505-123520. [23] J.H. Wang, Q.X. Zhang, S.S. Li, X.X. Pan, K. Chen, C. Zhang, Z. Wang, M.S. Jia, Short-term power forecasting of fishing-solar complementary photovoltaic power station based on a data-driven model, Energy Rep. 10 (2023) 1851-1863. [24] Y. Choi, B. Bhadriaju, H. Cho, J. Lim, I.S. Han, I. Moon, J.S. Kwon, J. Kim, Data-driven modeling of multimode chemical process: Validation with a real-world distillation column, Chem. Eng. J. 457 (2023) 141025. [25] Y.W. Zhao, Z.P. Wang, Z.Y. Sun, P. Liu, D.S. Cui, J.J. Deng, Data-driven lithium-ion battery degradation evaluation under overcharge cycling conditions, IEEE Trans. Power Electron. 38 (8) (2023) 10138-10150. [26] L.G. Maltais, L. Gosselin, Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons, Appl. Energy 307 (2022) 118229. [27] Q.L. Wang, J.Q. Han, F. Chen, S. Hu, C. Yun, Z. Dou, T.J. Yan, G.A. Yang, Modeling risk characterization networks for chemical processes based on multi-variate data, Energy 293 (2024) 130689. [28] J.Y. Ye, A. Bab-Hadiashar, R. Hoseinnezhad, N. Alam, A. Vargas-Uscategui, M. Patel, I. Cole, Predictions of in situ melt pool geometric signatures via machine learning techniques for laser metal deposition, int j comput integr manuf 36 (9) (2023) 1345-1361. [29] J.E. Cote-Ballesteros, V.H. Grisales Palacios, J.E. Rodriguez-Castellanos, A hybrid approach variable selection algorithm based on mutual information for data-driven industrial soft-sensor applications, Cien.Ing.Neogranadina 32 (1) (2022) 59-70. [30] Q.C. Jiang, X.F. Yan, Nonlinear plant-wide process monitoring using MI-spectral clustering and Bayesian inference-based multiblock KPCA, J. Process. Contr. 32 (2015) 38-50. [31] J. Wang, X.F. Yan, Mutual information-weighted principle components identified from the depth features of stacked autoencoders and original variables for oil dry point soft sensor, IEEE Access 7 (2018) 1981-1990. [32] W.J. Li, H.Y. Fang, G.X. Qin, X.Q. Tan, Z.W. Huang, F.T. Zeng, H.W. Du, S.P. Li, Concentration estimation of dissolved oxygen in Pearl River Basin using input variable selection and machine learning techniques, Sci. Total Environ. 731 (2020) 139099. [33] L. Wang, Y.G. He, X.Y. Liu, L. Li, K.X. Shao, M2TNet: Multi-modal multi-task Transformer network for ultra-short-term wind power multi-step forecasting, Energy Rep. 8 (2022) 7628-7642. [34] D.N. Reshef, Y.A. Reshef, H.K. Finucane, S.R. Grossman, G. McVean, P.J. Turnbaugh, E.S. Lander, M. Mitzenmacher, P.C. Sabeti, Detecting novel associations in large data sets, Science 334 (6062) (2011) 1518-1524. [35] C.K. Li, D.F. Zhao, S.J. Mu, W.H. Zhang, N. Shi, L.N. Li, Fault diagnosis for distillation process based on CNN-DAE, Chin. J. Chem. Eng. 27 (3) (2019) 598-604. [36] X.F. Yuan, L. Li, Y.A.W. Shardt, Y.L. Wang, C.H. Yang, Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development, IEEE Trans. Ind. Electron. 68 (5) (2021) 4404-4414. [37] M. Behnasr, H. Jazayeri-Rad, Robust data-driven soft sensor based on iteratively weighted least squares support vector regression optimized by the cuckoo optimization algorithm, J. Nat. Gas Sci. Eng. 22 (2015) 35-41. [38] X. Qian, S.K. Jia, K.J. Huang, H.S. Chen, Y. Yuan, X.G. Yuan, L. Zhang, MPC-PI cascade control for the Kaibel dividing wall column integrated with data-driven soft sensor model, Chem. Eng. Sci. 231 (2021) 116240. [39] Z. Yan, H. Chen, X. Dong, K. Zhou, Z. Xu, Research on prediction of multi-class theft crimes by an optimized decomposition and fusion method based on XGBoost, Expert Systems with Applications 207 (2022) 117943. [40] D.C. Feng, Z.T. Liu, X.D. Wang, Y. Chen, J.Q. Chang, D.F. Wei, Z.M. Jiang, Machine learning-based compressive strength prediction for concrete: an adaptive boosting approach, Constr. Build. Mater. 230 (2020) 117000. [41] Z. Olujic, L. Sun, A. de Rijke, P.J. Jansens, Conceptual design of an internally heat integrated propylene-propane splitter, Energy 31 (15) (2006) 3083-3096. [42] B. Liao, Z.G. Lei, Z. Xu, R.Q. Zhou, Z.T. Duan, New process for separating propylene and propane by extractive distillation with aqueous acetonitrile, Chem. Eng. J. 84 (3) (2001) 581-586. [43] R.P. Sheridan, W.M. Wang, A. Liaw, J. Ma, E.M. Gifford, Extreme gradient boosting as a method for quantitative structure-activity relationships, J. Chem. Inf. Model. 56 (12) (2016) 2353-2360. [44] X. Fei, K.L. He, Y.X. Huang, J.P. Tian, X.J. Hu, Y. Liang, X.Q. Yi, L.L. Xie, D. Huang, The rapid determination of the fatty acid content of rice by combining hyperspectral imaging and integrated learning models, Vib. Spectrosc. 129 (2023) 103609. [45] Z. Zhao, H.G. Nan, Z.H. Liu, Y.B. Yu, Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM, Environ. Sci. Pollut. Res. Int. 29 (38) (2022) 58097-58109. [46] J. Tang, Y.J. Li, M.F. Ding, H. Liu, D.P. Yang, X.Q. Wu, An ionospheric TEC forecasting model based on a CNN-LSTM-attention mechanism neural network, Remote. Sens. 14 (10) (2022) 2433. [47] X.D. Hu, P.L. Zhang, Q. Zhang, A Novel Framework of CNN Integrated with Adaboost for Remote Sensing Scene ClassificationIGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. September 26-October 2, 2020. Waikoloa, HI, USA. IEEE, 2020. [48] T.M. Zhang, G.W. Yan, R. Li, S.Y. Xiao, M.F. Ren, L. Cheng, An online transfer kernel recursive algorithm for soft sensor modeling with variable working conditions, Contr. Eng. Pract. 141 (2023) 105726. [49] Y.W. Chen, X.M. Zhang, Z.H. Song, M. Kano, Multivariate deep reconstruction neural network for multi-step-ahead prediction of industrial process quality variables, IFAC-PapersOnLine 56 (2) (2023) 2852-2857. [50] Y.F. Chen, A.L. Li, X.Y. Li, D. Xue, J. Long, Efficient JITL framework for nonlinear industrial chemical engineering soft sensing based on adaptive multi-branch variable scale integrated convolutional neural networks, Adv. Eng. Inform. 58 (2023) 102199. |