[1] International Energy Agency (IEA), Oil Market Report - June 2024, IEA, Paris, 2024 [2024-12-03], https://www.iea.org/reports/oil-market-report-june-2024. [2] M. Lang, H. Li, Sustainable routes for the synthesis of renewable adipic acid from biomass derivatives, ChemSusChem 15 (1) (2022) e202101531. [3] K. Sato, M. Aoki, R. Noyori, A “Green” route to adipic acid: direct oxidation of cyclohexenes with 30 percent hydrogen peroxide, Science 281 (5383) (1998) 1646-1647. [4] J.M. Su, L. Ni, Z. Cheng, N. Chen, P.Q. Hao, D.Y. Yang, Y. Pan, Thermal runaway inhibition of adipic acid green synthesis based on a radical chain reaction mechanism, Org. Process Res. Dev. 28 (4) (2024) 1018-1031. [5] Y.S. Liu, L. Ni, H. Yao, J.M. Su, Z. Cheng, The effects of acid and hydrogen peroxide stabilizer on the thermal hazard of adipic acid green synthesis, Sustainability 15 (8) (2023) 6530. [6] W. Jiang, L. Ni, J.C. Jiang, Q. Chen, Z.Q. Chen, S.L. Ye, Thermal hazard and reaction mechanism of the preparation of adipic acid through the oxidation with hydrogen peroxide, AlChE. J. 67 (1) (2021) e17089. [7] M. Ando, M. Fujita, Y.I. Izato, A. Miyake, A kinetic model for the autocatalytic behavior of nitric acid/formic acid mixtures to predict induction period, Process. Saf. Environ. Prot. 151 (2021) 182-187. [8] Y.X. Liu, Z.C. Zhu, L. Ni, H. Yao, J.C. Jiang, Z.Q. Chen, Process safety evaluation of the nitration synthesis process of Pendimethalin, Process. Saf. Environ. Prot. 182 (2024) 176-187. [9] J.I. Murray, D.B. Brown, M.V. Silva Elipe, S. Caille, Hazard evaluation and safety considerations for scale-up of a Fuming nitric acid mediated nitration of aryl boronic acids, Org. Process Res. Dev. 26 (3) (2022) 657-660. [10] L.P. Chen, T.T. Liu, Q. Yang, W.H. Chen, Thermal hazard evaluation for iso-octanol nitration with mixed acid, J. Loss Prev. Process. Ind. 25 (3) (2012) 631-635. [11] T. Yang, L.P. Chen, W.H. Chen, Y.S. Zhou, H.S. Gao, T.T. Zhong, Thermal stability of 2-ethylhexyl nitrate with acid, J. Therm. Anal. Calorim. 119 (1) (2015) 205-212. [12] M. Ando, M. Fujita, Y.I. Izato, A. Miyake, Autocatalytic reaction mechanism of nitric acid and formic acid mixtures based on thermal and in situ Raman spectroscopic analyses, J. Therm. Anal. Calorim. 144 (2) (2021) 553-562. [13] B.A.A. van Woezik, K.R. Westerterp, The nitric acid oxidation of 2-octanol. A model reaction for multiple heterogeneous liquid-liquid reactions, Chem. Eng. Process. Process. Intensif. 39 (6) (2000) 521-537. [14] K.H. Hsueh, W.T. Chen, Y.C. Chu, L.C. Tsai, C.M. Shu, Thermal reactive hazards of 1, 1-bis(tert-butylperoxy)cyclohexane with nitric acid contaminants by DSC, J. Therm. Anal. Calorim. 109 (3) (2012) 1253-1260. [15] S.J. Shen, S.H. Wu, J.H. Chi, Y.W. Wang, C.M. Shu, Thermal explosion simulation and incompatible reaction of dicumyl peroxide by calorimetric technique, J. Therm. Anal. Calorim. 102 (2) (2010) 569-577. [16] J.M. Tseng, C.M. Shu, J.P. Gupta, Y.F. Lin, Evaluation and modeling runaway reaction of methyl ethyl ketone peroxide mixed with nitric acid, Ind. Eng. Chem. Res. 46 (25) (2007) 8738-8745. [17] L.C. Tsai, M.L. You, M.F. Ding, C.M. Shu, Thermal hazard evaluation of lauroyl peroxide mixed with nitric acid, Molecules 17 (7) (2012) 8056-8067. [18] C.T. Yeh, W.C. Chen, C.M. Shu, Thermal hazard assessment of TMCH mixed with inorganic acids, MATEC Web Conf. 169 (2018) 01017. [19] S. Kumar, P.K. Sinha, U. Kamachi Mudali, R. Natarajan, Thermal decomposition of red-oil/nitric acid mixtures in adiabatic conditions, J. Radioanal. Nucl. Chem. 289 (2) (2011) 545-549. [20] A. Miyake, A. Kimura, Y. Satoh, R. Shimizu, M. Inano, T. Ogawa, Thermalhazard analysis of mixed system of hydrazine and nitric acid, J. Therm. Anal. Calorim. 85 (3) (2006) 633-636. [21] Q. Sun, L. Jiang, L. Gong, J.H. Sun, Experimental study on thermal hazard of tributyl phosphate-nitric acid mixtures using micro calorimeter technique, J. Hazard. Mater. 314 (2016) 230-236. [22] A.S. Obedkov, V.V. Kalistratova, I.V. Skvortsov, E.V. Belova, Thermal stability of nitric acid solutions of reducing agents used in spent nuclear fuel reprocessing, Nucl. Eng. Technol. 54 (9) (2022) 3580-3585. [23] E.R. Nazin, E.V. Belova, A.V. Smirnov, M.M. Belova, Parameters of exothermic processes in nitric acid solutions containing reducing agents, Prog. Nucl. Energy 176 (2024) 105408. [24] J. Samuel Vara kumar, V.S. Smitha, N.E. Sivanesh, M. Surianarayanan, H. Seshadri, V. Lakshman, Reactive thermal hazards of irradiated tributyl phosphate with nitric acid, Thermochim. Acta 666 (2018) 18-26. [25] V.S. Smitha, J.S.V. Kumar, M. Surianarayanan, H. Seshadri, N.V. Lakshman, Reactive chemical pathway of tributyl phosphate with nitric acid, Process. Saf. Environ. Prot. 116 (2018) 677-684. [26] D.J. Peng, C.M. Chang, M. Chiu, Thermal reactive hazards of HMX with contaminants, J. Hazard. Mater. 114 (1-3) (2004) 1-13. [27] Q. Sun, W.J. Xu, Y. Qiu, Effects of nitric acid and sulfuric acid on the thermal behavior of nitrocellulose by slow heating experiments, Cellulose 29 (11) (2022) 5991-6008. [28] R. Andreozzi, R. Marotta, R. Sanchirico, Thermal decomposition of acetic anhydride-nitric acid mixtures, J. Hazard. Mater. 90 (2) (2002) 111-121. [29] G.S. Zhang, M.J. Tang, The investigation of a devastating accident: an accidental explosion of 40 tons of TNT, J. Hazard. Mater. 34 (2) (1993) 225-233. [30] Y.H. Huang, C.C. Chiang, Y.P. I, C.T. Kuo, S.H. Wu, J.P. Hsu, J.C. Charpentier, Incompatible reaction evaluation and accident investigation of various acids in chemical industries, J. Therm. Anal. Calorim. 114 (3) (2013) 1225-1229. [31] F.H. Hedlund, M.F. Nielsen, S.H. Mikkelsen, E.K. Kragh, Violent explosion after inadvertent mixing of nitric acid and isopropanol-Review 15years later finds basic accident data corrupted, no evidence of broad learning, Saf. Sci. 70 (2014) 255-261. [32] Q.Z. Yang, X.L. Deng, S.Y. Yang, Laboratory explosion accidents: case analysis and preventive measures, ACS Chem. Health Saf. 30 (2) (2023) 72-82. [33] J.X. Liu, Y. Tian, S. Yang, Y.Q. Qin, X.F. Hou, Y.T. Hu, L.D. Hou, J. Ma, Analysis of explosion incidents in nuclear fuel reprocessing facilities and recommendations for their prevention, Int. J. Adv. Nucl. React. Des. Technol. 6 (2) (2024) 108-116. [34] F. Stoessel, Thermal Safety of Chemical Processes: Risk Assessment and Process Design, John Wiley & Sons, Hoboken, 2021. [35] J.H. Wu, D.H. Xu, X.S. Yang, J.H. Yuan, X.Q. Li, Z.Y. Zhang, Determination and correlation of vapor-liquid equilibria for the nitric acid + water, nitric acid + water + phosphoric acid, and nitric acid + water + phosphoric acid + sulfuric acid system, J. Chem. Eng. Data 68 (3) (2023) 633-641. [36] I. Sutton, Plant Design and Operations, Gulf Professional Publishing, Houston, 2017. [37] M. Sheng, D. Valco, C. Tucker, Heat loss in accelerating rate calorimetry analysis and thermal lag for high self-heat rates, Org. Process Res. Dev. 25 (1) (2021) 108-119. [38] A.P. Ballod, V. Ya Shtern, The gas-phase nitration of alkanes, Russ. Chem. Rev. 45 (8) (1976) 721-737. [39] C.L. Zhou, M. Wang, H.B. Tang, X.Y. Li, T. Yu, S.L. Tang, Chemical behavior of n-hexane and n-dodecane in nitric acid system, J. Nucl. Radiochem. 43 (2) (2021) 122-128. (in Chinese). [40] A.L. Kuhl, J. Forbes, J. Chandler, A.K. Oppenheim, R. Spektor, R.E. Ferguson, Confined combustion of TNT explosion products in air, Lawrence Livermore National Laboratory, Livermore, UCRL-JC-131748, 1998. [41] L. Donahue, F. Zhang, R.C. Ripley, Numerical models for afterburning of TNT detonation products in air, Shock. Waves 23 (6) (2013) 559-573. [42] C.E. Munroe, S.P. Howell, Products of Detonation of TNT, Proc. Am. Philos. Soc. 59 (3) (1920) 194-223. [43] I.E. Edri, H.Y. Grisaro, D.Z. Yankelevsky, TNT equivalency in an internal explosion event, J. Hazard. Mater. 374 (2019) 248-257. |