[1] E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta, Handbook of Industrial Mixing, John Wiley & Sons, Inc., Hoboken, New Jersey, 2004. [2] I.D. Kariyama, X. Zhai, B. Wu, Influence of mixing on anaerobic digestion efficiency in stirred tank digesters: a review, Water Res. 143 (2018) 503-517. [3] A.Q. Li, Y. Yao, X.Y. Tang, P.Q. Liu, Q. Zhang, Q. Li, P. Li, F. Zhang, Y.D. Wang, C.Y. Tao, Z.H. Liu, Experimental and computational investigation of chaotic advection mixing in laminar rectangular stirred tanks, Chem. Eng. J. 485 (2024) 149956. [4] A.Q. Li, Y.G. Yao, X. Zhang, Y. Wan, P. Li, Y.D. Wang, C.Y. Tao, Z.H. Liu, Using CFD and machine learning to explore chaotic mixing in laminar diameter-transformed stirred tanks, Chem. Eng. J. 499 (2024) 156210. [5] P. Cullen, S. Bakalis, C. Sullivan, Advances in control of food mixing operations, Curr. Opin. Food Sci. 17 (2017) 89-93. [6] C. Darmali, S. Mansouri, N. Yazdanpanah, M.W. Woo, Mechanisms and control of impurities in continuous crystallization: A review, Ind. Eng. Chem. Res. 58(4) (2019) 1463-1479. [7] S. Hashimoto, N. Ohmura, S.J. Kim, S.B. Ibrahim, Advances in mixing technology: recent advances in mixing research and development, Int. J. Chem. Eng. 2012 (2012) 316891. [8] S.J. Geng, Z. Mao, Q.S. Huang, C. Yang, Process intensification in pneumatically agitated slurry reactors, Engineering 7 (3) (2021) 304-325. [9] F. Scargiali, A. Busciglio, F. Grisafi, A. Tamburini, G. Micale, A. Brucato, Power consumption in uncovered unbaffled stirred tanks: influence of the viscosity and flow regime, Ind. Eng. Chem. Res. 52 (42) (2013) 14998-15005. [10] Y. Yao, Z.H. Liu, G.C. Zheng, C.Y. Tao, Y.D. Wang, B.J. Xi, Intensification of solid-liquid suspension performance in an elliptical uncovered unbaffled stirred tank, Ind. Eng. Chem. Res. 62 (12) (2023) 5315-5325. [11] Y. Yao, P.Q. Liu, Q. Zhang, Z.Q. Li, B.J. Xi, C.Y. Tao, Y.D. Wang, Z.H. Liu, Effect of aspect ratio of elliptical stirred vessel on mixing time and flow field characteristics in the absence of baffles, Chin. J. Chem. Eng. 65 (2024) 63-74. [12] A. Busciglio, F. Grisafi, F. Scargiali, A. Brucato, Mixing dynamics in uncovered unbaffled stirred tanks, Chem. Eng. J. 254 (2014) 210-219. [13] C. Galletti, E. Brunazzi, On the main flow features and instabilities in an unbaffled vessel agitated with an eccentrically located impeller, Chem. Eng. Sci. 63 (18) (2008) 4494-4505. [14] J. Ramirez-Cruz, M. Salinas-Vazquez, G. Ascanio, W. Vicente-Rodriguez, C. Lagarza-Cortes, Mixing dynamics in an uncovered unbaffled stirred tank using Large-Eddy Simulations and a passive scalar transport equation, Chem. Eng. Sci. 222 (2020) 115658. [15] H. Sung, H. Park, Free-surface air entrainment into bubbles by a Rushton-type impeller in unbaffled stirred tank, Phys. Fluids 36(6) (2024) 063335. [16] A. Tamburini, A. Cipollina, G. Micale, F. Scargiali, A. Brucato, Particle suspension in vortexing unbaffled stirred tanks, Ind. Eng. Chem. Res. 55(27) (2016) 7535-7547. [17] L. Schembri, G. Caputo, M. Ciofalo, F. Grisafi, S. Lima, F. Scargiali, CFD simulations of the transition between non-aerated and aerated conditions in uncovered unbaffled stirred tanks, Chem. Eng. Sci. 302 (2025) 120824. [18] T. Plusa, J. Talaga, A. Duda, P. Duda, Modeling mixing dynamics in uncovered baffled and unbaffled stirred tanks, AlChE. J. 67 (9) (2021) e17322. [19] R. Alcamo, G. Micale, F. Grisafi, A. Brucato, M. Ciofalo, Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine, Chem. Eng. Sci. 60 (8-9) (2005) 2303-2316. [20] G. Montante, A. Bakker, A. Paglianti, F. Magelli, Effect of the shaft eccentricity on the hydrodynamics of unbaffled stirred tanks, Chem. Eng. Sci. 61 (9) (2006) 2807-2814. [21] G.O. Fountain, D.V. Khakhar, J.M. Ottino, Visualization of three-dimensional chaos, Science 281 (5377) (1998) 683-686. [22] S. Wang, G. Metcalfe, R.L. Stewart, J. Wu, N. Ohmura, X. Feng, C. Yang, Solid-liquid separation by particle-flow-instability, Energ. Environ. Sci. 7(12) (2014) 3982-3988. [23] D.J. Lamberto, M.M. Alvarez, F.J. Muzzio, Experimental and computational investigation of the laminar flow structure in a stirred tank, Chem. Eng. Sci. 54 (7) (1999) 919-942. [24] A. Tamburini, A. Brucato, M. Ciofalo, G. Gagliano, G. Micale, F. Scargiali, CFD simulations of early- to fully-turbulent conditions in unbaffled and baffled vessels stirred by a Rushton turbine, Chem. Eng. Res. Des. 171 (2021) 36-47. [25] J.M. Ottino, The Kinematics of Mixing: Stretching, Chaos, and Transport, Cambridge University Press, Cambridge, UK & New York, USA, 1989. [26] M.M. Alvarez, J.M. Zalc, T. Shinbrot, P.E. Arratia, F.J. Muzzio, Mechanisms of mixing and creation of structure in laminar stirred tanks, AlChE. J. 48 (10) (2002) 2135-2148. [27] P.E. Arratia, J. Kukura, J. Lacombe, F.J. Muzzio, Mixing of shear-thinning fluids with yield stress in stirred tanks, AlChE. J. 52 (7) (2006) 2310-2322. [28] D. Bulnes-Abundis, M.M. Alvarez, The simplest stirred tank for laminar mixing: Mixing in a vessel agitated by an off-centered angled disc, AlChE. J. 59 (8) (2013) 3092-3108. [29] J.M. Zalc, E.S. Szalai, M.M. Alvarez, F.J. Muzzio, Using CFD to understand chaotic mixing in laminar stirred tanks, AlChE. J. 48 (10) (2002) 2124-2134. [30] S. Wang, J. Wu, E. Bong, Reduced IMRs in a mixing tank via agitation improvement, Chem. Eng. Res. Des. 91 (6) (2013) 1009-1017. [31] S. Hashimoto, H. Ito, Y. Inoue, Experimental study on geometric structure of isolated mixing region in impeller agitated vessel, Chem. Eng. Sci. 64 (24) (2009) 5173-5181. [32] S. Hashimoto, K. Natami, Y. Inoue, Mechanism of mixing enhancement with baffles in impeller-agitated vessel, part I: a case study based on cross-sections of streak sheet, Chem. Eng. Sci. 66 (20) (2011) 4690-4701. [33] H.J. Jo, Y.J. Kim, W.R. Hwang, Enhancement of mixing performance with anchor-type impellers via chaotic advection, Chem. Eng. Sci. 243 (2021) 116757. [34] D.J. Lamberto, M.M. Alvarez, F.J. Muzzio, Computational analysis of regular and chaotic mixing in a stirred tank reactor, Chem. Eng. Sci. 56 (16) (2001) 4887-4899. [35] D.J. Lamberto, F.J. Muzzio, P.D. Swanson, A.L. Tonkovich, Using time-dependent RPM to enhance mixing in stirred vessels, Chem. Eng. Sci. 51 (5) (1996) 733-741. [36] Q.Q. Kang, J.F. Liu, X. Feng, C. Yang, J.T. Wang, Isolated mixing regions and mixing enhancement in a high-viscosity laminar stirred tank, Chin. J. Chem. Eng. 41 (2022) 176-192. [37] B. Keshavarz, M. Geri, Mandelbrot granular raft, Phys. Rev. Fluids 8 (11) (2023) 110506. [38] T. Shinbrot, M.M. Alvarez, J.M. Zalc, F.J. Muzzio, Attraction of minute particles to invariant regions of volume preserving flows by transients, Phys. Rev. Lett. 86 (7) (2001) 1207-1210. [39] A. Busciglio, F. Scargiali, F. Grisafi, A. Brucato, Oscillation dynamics of free vortex surface in uncovered unbaffled stirred vessels, Chem. Eng. J. 285 (2016) 477-486. [40] T. Yamamoto, Y. Fang, S.V. Komarov, Surface vortex formation and free surface deformation in an unbaffled vessel stirred by on-axis and eccentric impellers, Chem. Eng. J. 367 (2019) 25-36. [41] S.S. Deshpande, K.K. Kar, J. Walker, J. Pressler, W. Su, An experimental and computational investigation of vortex formation in an unbaffled stirred tank, Chem. Eng. Sci. 168 (2017) 495-506. [42] N. Lamarque, B. Zoppe, O. Lebaigue, Y. Dolias, M. Bertrand, F. Ducros, Large-eddy simulation of the turbulent free-surface flow in an unbaffled stirred tank reactor, Chem. Eng. Sci. 65 (15) (2010) 4307-4322. [43] A.Q. Li, Y. Yao, X. Zhang, S.L. Gu, Y. Wan, P. Li, Y.D. Wang, C.Y. Tao, Z.H. Liu, On the chaotic characteristics and turbulent mixing mechanisms of elliptical unbaffled stirred tanks, AlChE. J. 71 (7) (2025) e18827. [44] Z. Zhang, G.R. Chen, Liquid mixing enhancement by chaotic perturbations in stirred tanks, Chaos Solitons Fractals 36 (1) (2008) 144-149. [45] K. Yang, B. Yu, J.X. Pan, M. Wang, H. Wang, Q.T. Xiao, Hydraulic modeling of slag cover surface in top-blown molten bath smelting processes assisted by machine learning, 36 (10) (2024) 103325. [46] E.S. Szalai, F.J. Muzzio, Predicting mixing microstructure in three-dimensional chaotic systems, 15 (11) (2003) 3274-3279. [47] Y.W. Fan, C.L. Li, S.B. Wang, H. Wang, Y.G. Wei, J.X. Xu, Q.T. Xiao, Enhancement of mixing efficiency in mechanical stirring reactors via chaotic stirring techniques: Application to the treatment of zinc-containing solid waste, Chem. Eng. Sci. 249 (2022) 117367. [48] S. Ye, K.T. Chau, Chaoization of DC motors for industrial mixing, IEEE Trans. Ind. Electron. 54 (4) (2007) 2024-2032. [49] J.M. Ottino, F.J. Muzzio, M. Tjahjadi, J.G. Franjione, S.C. Jana, H.A. Kusch, Chaos, symmetry, and self-similarity: exploiting order and disorder in mixing processes, Science 257 (5071) (1992) 754-760. [50] T. Meng, Y. Wang, S.S. Wang, S. Qin, Q. Zhang, Y.D. Wang, C.Y. Tao, Y.Q. Xu, Z.H. Liu, Exploration of multishafts stirred reactors: an investigation on experiments and large eddy simulations for turbulent chaos and mixing characteristics, Ind. Eng. Chem. Res. 63 (5) (2024) 2441-2456. [51] S. Wang, R.L. Stewart, G. Metcalfe, Visualization of the trapping of inertial particles in a laminar mixing tank, Chem. Eng. Sci. 143 (2016) 99-104. [52] A. Busciglio, G. Caputo, F. Scargiali, Free-surface shape in unbaffled stirred vessels: Experimental study via digital image analysis, Chem. Eng. Sci. 104 (2013) 868-880. [53] X. Xiong, S.S. Wang, P.Q. Liu, C.Y. Tao, Y.D. Wang, Z.H. Liu, Numerical investigation on intensified mixing performance with modified dual impeller, Chem. Eng. Sci. 274 (2023) 118698. [54] J.M. Zalc, M.M. Alvarez, F.J. Muzzio, B.E. Arik, Extensive validation of computed laminar flow in a stirred tank with three Rushton turbines, AlChE. J. 47 (10) (2001) 2144-2154. [55] P.E. Arratia, T. Shinbrot, M.M. Alvarez, F.J. Muzzio, Mixing of non-Newtonian fluids in steadily forced systems, Phys. Rev. Lett. 94 (8) (2005) 084501. [56] H.L. Liu, J.G. Lu, J.F. Wang, Mixing of highly viscous fluids: Flow visualization and intensification, In: The 12th International Symposium on Measurement Techniques for Multiphase Flows, Japan, 2023. [57] R.A. Gerwin, Stability of the interface between two fluids in relative motion, Rev. Mod. Phys. 40 (3) (1968) 652-658. [58] J. Casanova, J. Jose, E. Garcia-Berro, S.N. Shore, A.C. Calder, Kelvin-Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions, Nature 478 (7370) (2011) 490-492. [59] A. Zamiri, J.T. Chung, Ability of URANS approach in prediction of unsteady turbulent flows in an unbaffled stirred tank, Int. J. Mech. Sci. 133 (2017) 178-187. [60] Y.Q. Zhang, X. Pan, Y.H. Wang, P.C. Luo, H. Wu, Numerical and experimental investigation on surface air entrainment mechanisms of a novel long-short blades agitator, AlChE. J. 64 (1) (2018) 316-325. [61] J.N. Haque, T. Mahmud, K.J. Roberts, D. Rhodes, Modeling turbulent flows with free-surface in unbaffled agitated vessels, Ind. Eng. Chem. Res. 45 (8) (2006) 2881-2891. [62] F. Scargiali, A. Tamburini, G. Caputo, G. Micale, On the assessment of power consumption and critical impeller speed in vortexing unbaffled stirred tanks, Chem. Eng. Res. Des. 123 (2017) 99-110. [63] R. Verzicco, M. Fatica, G. Iaccarino, P. Orlandi, Flow in an impeller-stirred tank using an immersed-boundary method, AlChE. J. 50 (6) (2004) 1109-1118. [64] M.M. Alvarez, P.E. Arratia, F.J. Muzzio, Laminar mixing in eccentric stirred tank systems, Can. J. Chem. Eng. 80 (4) (2002) 546-557. [65] S.S. Wang, T. Meng, S.D. Cen, P.Q. Liu, Y. Wang, S. Qin, Y.D. Wang, Z.H. Liu, Hydrodynamic intensification and interfacial regulation strategy for the mixing process of non-Newtonian fluids, Chem. Eng. J. 493 (2024) 152691. [66] J.D. Tice, H. Song, A.D. Lyon, R.F. Ismagilov, Formation of droplets and mixing in multiphase microfluidics at low values of the Reynolds and the capillary numbers, Langmuir 19 (22) (2003) 9127-9133. [67] M.R. Bringer, C.J. Gerdts, H. Song, J.D. Tice, R.F. Ismagilov, Microfluidic systems for chemical kinetics that rely on chaotic mixing in droplets, Philos. Trans. A Math. Phys. Eng. Sci. 362 (1818) (2004) 1087-1104. [68] Q.Q. Kang, X. Feng, C. Yang, J.T. Wang, DEM-VOF simulations on the drawdown mechanisms of floating particles at free surface in turbulent stirred tanks, Chem. Eng. J. 431 (2022) 133275. [69] Y.T. Xiao, X.Y. Li, S.L. Ren, Z.S. Mao, C. Yang, Hydrodynamics of gas phase under typical industrial gassing rates in a gas-liquid stirred tank using intrusive image-based method, Chem. Eng. Sci. 227 (2020) 115923. [70] M.Y. Fan, J.X. Xu, H. Sun, S.B. Wang, X. Zhang, H. Wang, W.L. Yin, Enhancement of chaotic mixing performance in laminar flow with reciprocating and rotating coupled agitator, Chem. Eng. Sci. 280 (2023) 118988. [71] F. Cabaret, L. Fradette, P.A. Tanguy, Effect of shaft eccentricity on the laminar mixing performance of a radial impeller, Can. J. Chem. Eng. 86 (6) (2008) 971-977. [72] M.X. Zhang, Y.Y. Hu, W.T. Wang, T. Shao, Y. Cheng, Intensification of viscous fluid mixing in eccentric stirred tank systems, Chem. Eng. Process. Process. Intensif. 66 (2013) 36-43. [73] M.P. Bracciale, A. Broggi, S. Cerbelli, M. Formisano, M.L. Santarelli, M. Scarsella, A. Marrocchi, The impact of chaotic advection on the microstructure of polymer-modified bitumen, AlChE. J. 60 (5) (2014) 1870-1879. [74] D.Y. Gu, Z.H. Liu, J. Li, Z.M. Xie, C.Y. Tao, Y.D. Wang, Intensification of chaotic mixing in a stirred tank with a punched rigid-flexible impeller and a chaotic motor, Chem. Eng. Process. Process. Intensif. 122 (2017) 1-9. [75] J.C. Sun, H.L. Liu, J.F. Wang, F.C. He, Flow visualization by PLIF technique and numerical modeling of mixing enhancement in stirred tank under electric fields, Chem. Ind. Eng. Prog. 40(12) (2021) 6547-6556. [76] A.R. Khopkar, L. Fradette, P.A. Tanguy, Hydrodynamics of a dual shaft mixer with Newtonian and non-Newtonian fluids, Chem. Eng. Res. Des. 85 (6) (2007) 863-871. [77] A.R. Khopkar, L. Fradette, P.A. Tanguy, Emulsification capability of a dual shaft mixer, Chem. Eng. Res. Des. 87 (12) (2009) 1631-1639. [78] Y. Xu, B. Wu, P.C. Luo, Investigation on the flow characteristics of a novel multi-blade combined agitator by time-resolved particle image velocimetry and large eddy simulation, AlChE. J. 66 (8) (2020) e16277. [79] A.A. Arosemena, H. Ali, J. Solsvik, Characterization of vortical structures in a stirred tank, 34 (2) (2022) 025127. [80] P. Sundararajan, A.D. Stroock, Transport phenomena in chaotic laminar flows, Annu. Rev. Chem. Biomol. Eng. 3 (2012) 473-496. [81] P.E. Arratia, J.P. Lacombe, T. Shinbrot, F.J. Muzzio, Segregated regions in continuous laminar stirred tank reactors, Chem. Eng. Sci. 59 (7) (2004) 1481-1490. [82] N.H. Shahirudin, Alatengtuya, N. Kumagai, T. Horie, N. Ohmura, Effect of temperature change on geometric structure of isolated mixing regions in stirred vessel, Int. J. Chem. Eng. 2012 (1) (2012) 287051. [83] M.H. Liu, G.D. Zhang, J. Xiao, R. Jeantet, G. Delaplace, Y. Wang, Z.Z. Dong, X.D. Chen, Mixing intensification with soft-elastic baffle (SEB) in a soft-elastic reactor (SER), Chem. Eng. Process. Process. Intensif. 180 (2022) 108764. |