1 Liang, J., Qian, J., “Multivariate statistical process monitoring and control: recent developments and applications to chemical industry”, Chin. J. Chem. Eng., 11 (2), 191-203 (2003).2 Ye, L., Shi, X., Liang J., “A multi-level approach for complex fault isolation based on structured residuals”, Chin. J. Chem. Eng., 19 (3), 462-472 (2011).3 Liu, X., Li, K., McAfee, M., Irwin, G.W., “Improved nonlinear PCA process monitoring using support vector data description”, Journal of Process Control, 21 (9), 1306-1317 (2011).4 Wang, Z., Yuan, J., “Online supervision of penicillin cultivations based on rolling MPCA”, Chin. J. Chem. Eng., 15 (1), 92-96 (2007).5 Zhang, Y., Ma, C., “Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS”, Chem. Eng. Sci., 66 (1), 64-72 (2011).6 Deng, X., Tian, X., “Multivariate statistical process monitoring using multiscale kernel principal component analysis”, In: Proceedings of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, Tsinghua University, Beijing, 108-112 (2006).7 He, X., Niyogi, P., “Locality preserving projections”, Adv. Neural Infor. Process. Systems, 16, 153-160 (2003).8 Roweis, S.T., Saul, L.K., “Nonlinear dimensionality reduction by locally linear embedding”, Science, 290 (5500), 2323-2326 (2000).9 Zhang, T., Yang, J., Zhao, D., Ge, X., “Linear local tangent space alignment and application to face recognition”, Neurocomputing, 70 (7-9), 1547-1553 (2007).10 Hu, K., Yuan, J., “Multivariate statistical process control based on multiway locality preserving projections”, Journal of Process Control, 18 (7-8), 797-807 (2008).11 Yu, J. B., “Bearing performance degradation assessment using locality preserving projections”, Expert Systems Application, 38 (6), 7440-7450 (2011).12 Zhang, M., Ge, Z., Song, Z.,“Global-local structure analysis model and its application for fault detection and identification”, Ind. Eng. Chem. Res., 50 (11), 6837-6848 (2011).13 He, X., Cai, D., Min, W., “Statistical and computational analysis of locality preserving projection”, In: Proceedings of the 22th International Conference on Machine Learning, Bonn, Germanny, 281-288 (2005).14 Mika, S., Ratsch, G. Weston, J., Scholkopf, B., Smola, A., Muller, K.R., “Constructing descriptive and discriminative nonlinear features: Rayleigh coefficients in kernel feature spaces”, IEEE Transactions on Pattern Anal. Machine Intelligent, 25 (5), 623-628 (2003).15 Melzer, T., Reiter, M., Bischof, H., “Appearance models based on kernel canonical correlation analysis”, Pattern Recognition, 36 (9), 1961-1971 (2003). 16 Choi, S.W., Lee, C., Lee, J.M., Park, J.H., Lee, I.B., “Fault detection and identification of nonlinear processes based on kernel PCA”, Chemometrics and Intelligent Laboratory Systems, 75 (1), 55-67 (2005).17 Sumana, C., Bhushan, M., Venkateswarlu, C., Gudi, R.D., “Improved nonlinear process monitoring using KPCA with sample vector selection and combined index”, Asia-Pacific J. Chem. Eng., 6 (3), 460-469 (2011).18 Baudat, G., Anouar, F., “Feature vector selection and projection using kernels”, Neurocomputing, 55 (1-2), 21-38 (2003).19 Lee, J.M., Yoo, C.K., Lee, I.B., “Statistical process monitoring with independent component analysis”, Journal of Process Control, 14 (5), 467-485 (2004).20 Tian, X., Zhang, X., Deng, X., Chen, S., “Multiway kernel independent component analysis based on feature samples for batch process monitoring”, Neurocomputing, 72 (7-9), 1584-1596 (2009).21 Singhal, A., Seborg, D.E., “Effect of data compression on pattern matching in historical data”, Ind. Eng. Chem. Res., 44 (9), 3203-3212 (2005).22 Johannesmeyer, M.C., Singhal, A., Seborg, D.E., “Pattern matching in historical data”, AIChE J., 48 (9), 2022-2038 (2002). |