[1] W.H. Li, H.H. Yue, S.V. Cervantes, S.J. Qin, Recursive PCA for adaptive process monitoring, J. Process Control 10 (2000) 471-486. [2] C. Rosen, J.A. Lennox, Multivariate and multi-scale monitoring of wastewater treatment operation, Water Res. 35 (2001) 3402-3410. [3] Y.W. Zhang, S. Li, Y.D. Teng, Dynamic process monitoring using recursive kernel principle component analysis, Chem. Eng. Sci. 72 (2012) 78-86. [4] X.Q. Liu, U. Kruger, T. Littler, L. Xie, S.Q. Wang, Moving window kernel PCA for adaptive monitoring of nonlinear processes, Chemom. Intell. Lab. Syst. 96 (2009) 132-143. [5] F.L.Wang, S. Tan, J. Peng, Y.Q. Chang, Process monitoring based on mode identification for multi-mode process with transitions, Chemom. Intell. Lab. Syst. 110 (2012) 144-155. [6] H.H. Ma, Y. Hu, H.B. Shi, Fault detection and identification based on neighborhood standardized local outlier factor method, Ind. Eng. Chem. Res. 52 (2013) 2389-2402. [7] P. Teppola, S.P. Mujunen, P. Minkkinen, Adaptive fuzzy C-means clustering in process monitoring, Chemom. Intell. Lab. Syst. 45 (1999) 23-38. [8] J.L. Liu,Modeling a large-scale nonlinear system using adaptive Takagi-Sugeno fuzzy model on PCA subspace, Ind. Eng. Chem. Res. 46 (2007) 788-800. [9] M. Petković, M.R. Rapaić, Z.D. Jeličić, A. Pisano, On-line adaptive clustering for process monitoring and fault detection, Expert Syst. Appl. 39 (2012) 10226-10235. [10] H.D. Jin, Y.H. Lee, G. Lee, C.H. Han, Robust recursive principal component analysis modeling for adaptive monitoring, Ind. Eng. Chem. Res. 45 (2006) 696-703. [11] Y.H. Lee, H.D. Jin, C.H. Han, On-line process state classification for adaptive monitoring, Ind. Eng. Chem. Res. 45 (2006) 3095-3107. [12] S.W. Choi, E.B. Martin, A.J. Morris, I.B. Lee, Adaptive multivariate statistical process control for monitoring time-varying processes, Ind. Eng. Chem. Res. 45 (2006) 3108-3118. [13] Z.Q. Ge, Z.H. Song, Online monitoring of nonlinear multiple mode processes based on adaptive local model approach, Control. Eng. Pract. 16 (2008) 1427-1437. [14] X. Xie, H.B. Shi, Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models, Ind. Eng. Chem. Res. 51 (2012) 5497-5505. [15] J. Yu, A particle filter driven dynamic Gaussianmixture model approach for complex process monitoring and fault diagnosis, J. Process Control 22 (2012) 778-788. [16] M. Kermit, O. Tomic, Independent component analysis applied on gas sensor array measurement data, IEEE Sens. J. 3 (2003) 218-228. [17] Z.Q. Ge, Z.H. Song, Process monitoring based on independent component analysisprincipal component analysis (ICA-PCA) and similarity factors, Ind. Eng. Chem. Res. 46 (2007) 2054-2063. [18] C.H. Zhao, F.R. Gao, F.L. Wang, Nonlinear batch process monitoring using phasebased kernel independent component analysis-principal component analysis (KICA-PCA), Ind. Eng. Chem. Res. 48 (2009) 9163-9174. [19] H.P. Kriegel, P. Kröger, E. Schubert, A. Zimek, LoOP: Local Outlier Probabilities, Proceedings of the 18th ACM conference on Information and knowledge management, 2009, pp. 1649-1652. [20] J.S. Lee, B.Y. Kang, S.H. Kang, Integrating independent component analysis and local outlier factor for plant-wide process monitoring, J. Process Control 21 (2011) 1011-1021. [21] J.M. Lee, S.J. Qin, I.B. Lee, Fault detection and diagnosis based on modified independent component analysis, AIChE J. 52 (2006) 3501-3514. [22] X. Wang, U. Kruger, G.W. Irwin, Process monitoring approach using fast moving window PCA, Ind. Eng. Chem. Res. 44 (2005) 5691-5702. [23] S. Yoon, J.F. MacGregor, Fault diagnosis with multivariate statistical models part I: using steady state fault signatures, J. Process Control 11 (2001) 387-400. |