1 Wold, S., "Nonlinear partial least squares modeling: II. Spline inner relation", Chemometrics and Intelligent Laboratory Systems, 14, 71-84 (1992).2 Qin, S.J., McAvoy, T.J., "Nolinear PLS modeling using neural networks", Computers and Chemical Engineering, 16, 379-391 (1992).3 Malthouse, E.C., Tamhane, A.C., Mah, R.S.H., "Nonlinear partial least squares", Computers and Chemical Engineering, 21, 875-890 (1997).4 Rosipal, R., Trejo, L.J., "Kernel partial least squares regression in reproducing kernel Hilbert space", Journal of Machine Learning Research, 2, 97-123 (2001).5 Ge, Z.Q., Yang, C.J., Song, Z.H., "Improved kernel PCA-based monitoring approach for nonlinear processes", Chemical Engineering Science, 64, 2245-2255 (2009).6 Basseville, M., "On-board component fault detection and isolation using the statistical local approach", Automatic, 34(11), 1391-1415 (1998).7 Kruger, U., Kumar, S., Littler, T., "Improved principal component monitoring using the local approach", Automatic, 43, 1532-1542 (2007).8 Kruger, U., Dimitriadis, G., "Diagnosis of process faults in chemical systems using a local partial least squares approach", AIChE Journal, 54, 2581-2596 (2008).9 Hu, Y., Ma, H.H., Shi, H.B., "Enhanced batch process monitoring using just-in-time-learning based kernel partial least squares", Chemometrics and Intelligent Laboratory Systems, 123, 15-27 (2013).10 Zhang, Y.W., Teng, Y.D., "Process data modeling using modified kernel partial least squares", Chemical Engineering Science, 65, 6353-6361 (2010).11 Wang, L., Shi, H.B., "Multivariate statistical process monitoring using an improved independent component analysis", Chemical Engineering Research and Design, 88, 403-414 (2010).12 Chiang, L.H., Russell, E.L., Braatz, R.D., Fault Detection and Diagnosis in Industrial Systems, Springer, London, 175-281 (2001).13 Li, G., Qin, S.J., Zhou, D.H., "Geometric properties of partial least squares for process monitoring", Automatica, 46, 204-210 (2010).14 Xie, X., Shi, H.B., "Multimode process monitoring based on fuzzy C-means in locality preserving projection subspace", Chin. J. Chem. Eng., 20(6), 1174-1179 (2012). |