Chin.J.Chem.Eng. ›› 2015, Vol. 23 ›› Issue (7): 1102-1109.DOI: 10.1016/j.cjche.2015.04.018
• SEPARATION SCIENCE AND ENGINEERING • Previous Articles Next Articles
Xianfu Chen, Gongping Liu, Hanyu Zhang, Yiqun Fan
Received:
2014-11-18
Revised:
2015-03-18
Online:
2015-08-21
Published:
2015-07-28
Contact:
Yiqun Fan
Supported by:
Supported by the National High Technical Research Program of China (2012AA03A606), the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (12KJA530001) and the Innovative Research Team Program by the Ministry of Education of China (IRT13070).
Xianfu Chen, Gongping Liu, Hanyu Zhang, Yiqun Fan
通讯作者:
Yiqun Fan
基金资助:
Supported by the National High Technical Research Program of China (2012AA03A606), the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (12KJA530001) and the Innovative Research Team Program by the Ministry of Education of China (IRT13070).
Xianfu Chen, Gongping Liu, Hanyu Zhang, Yiqun Fan. Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol[J]. Chin.J.Chem.Eng., 2015, 23(7): 1102-1109.
Xianfu Chen, Gongping Liu, Hanyu Zhang, Yiqun Fan. Fabrication of graphene oxide composite membranes and their application for pervaporation dehydration of butanol[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1102-1109.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2015.04.018
[1] J. Kim, L.J. Cote, J.X. Huang, Two dimensional soft material: New faces of graphene oxide, Acc. Chem. Res. 45 (8) (2012) 1356-1364.[2] B.X. Mi, Graphene oxide membranes for ionic and molecular sieving, Science 343 (6172) (2014) 740-742.[3] H. Zarrin, D. Higgins, Y. Jun, Z.W. Chen, M. Fowler, Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells, J. Phys. Chem. C 115 (42) (2011) 20774-20781.[4] H.Y. Liu, P.X. Xi, G.Q. Xie, Y.J. Shi, F.P. Hou, L. Huang, F.J. Chen, Z.Z. Zeng, C.W. Shao, J. Wang, Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization, J. Phys. Chem. C 116 (5) (2012) 3334-3341.[5] M. Hu, B.X. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol. 47 (8) (2013) 3715-3723.[6] W. Choi, J. Choi, J. Bang, J.H. Lee, Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications, ACS Appl. Mater. Interfaces 5 (23) (2013) 12510-12519.[7] V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future, Prog. Mater. Sci. 56 (8) (2011) 1178-1271.[8] N.X.Wang, S.L. Ji, G.J. Zhang, J. Li, L.Wang, Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation, Chem. Eng. J. 213 (2012) 318-329.[9] K. Hu, M.K. Gupta, D.D. Kulkarni, V.V. Tsukruk, Ultra-robust graphene oxide-silk fibroin nanocomposite membranes, Adv. Mater. 25 (16) (2013) 2301-2307.[10] B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination 313 (2013) 199-207.[11] B.G. Choi, Y.S. Huh, Y.C. Park, D.H. Jung, W.H. Hong, H. Park, Enhanced transport properties in polymer electrolyte composite membranes with graphene oxide sheets, Carbon 50 (15) (2012) 5395-5402.[12] H.Y. Zhao, L.G.Wu, Z.J. Zhou, L. Zhang, H.L. Chen, Improving the antifouling property of polysulfone ultrafiltration membrane by incorporation of isocyanate-treated graphene oxide, PCCP 15 (23) (2013) 9084-9092.[13] H.W. Kim, H.W. Yoon, S.M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.Y. Choi, H.B. Park, Selective gas transport through few-layered graphene and graphene oxide membranes, Science 342 (6154) (2013) 91-95.[14] D.W. Boukhvalov, M.I. Katsnelson, Y.W. Son, Origin of anomalous water permeation through graphene oxide membrane, Nano Lett. 13 (8) (2013) 3930-3935.[15] H. Huang, Z. Song, N. Wei, L. Shi, Y. Mao, Y. Ying, L. Sun, Z. Xu, X. Peng, Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes, Nat. Commun. 4 (2013) 2979-2987.[16] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335 (6067) (2012) 442-444.[17] J. Lee, H.R. Chae, Y.J.Won, K. Lee, C.H. Lee, H.H. Lee, I.C. Kim, J.M. Lee, Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment, J. Membr. Sci. 448 (2013) 223-230.[18] H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H.J. Ploehn, Y. Bao, M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation, Science 342 (6154) (2013) 95-98.[19] C.Z. Sun, M.S.H. Boutilier, H. Au, P. Poesio, B. Bai, R. Karnik, N.G. Hadjiconstantinou, Mechanisms of molecular permeation through nanoporous graphene membranes, Langmuir 30 (2) (2013) 675-682.[20] M.X. Shan, Q.Z. Xue, N.N. Jing, C.C. Ling, T. Zhang, Z.F. Yan, J.T. Zheng, Influence of chemical functionalization on the CO2/N2 separation performance of porous graphene membranes, Nanoscale 4 (17) (2012) 5477-5482.[21] W.S. Hung, Q.F. An, M. De Guzman, H.Y. Lin, S.H. Huang, W.R. Liu, C.C. Hu, K.R. Lee, J.Y. Lai, Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide, Carbon 68 (2014) 670-677.[22] T.M. Yeh, Z. Wang, D. Mahajan, B.S. Hsiao, B. Chu, High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers, J. Mater. Chem. A 1 (41) (2013) 12998-13003.[23] K. Huang, G.P. Liu, Y.Y. Lou, Z.Y. Dong, J. Shen,W.Q. Jin, A graphene oxide membrane with highly selective molecular separation of aqueous organic solution, Angew. Chem. Int. Ed. 53 (27) (2014) 6929-6932.[24] Y.P. Tang, D.R. Paul, T.S. Chung, Free-standing graphene oxide thin films assembled by a pressurized ultrafiltrationmethod for dehydration of ethanol, J. Membr. Sci. 458 (2014) 199-208.[25] Y.Y. Lou, G.P. Liu, S.N. Liu, J. Shen, W.Q. Jin, A facile way to prepare ceramicsupported graphene oxide composite membrane via silane-graft modification, Appl. Surf. Sci. 307 (2014) 631-637.[26] M. Hu, B.X. Mi, Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction, J. Membr. Sci. 469 (2014) 80-87.[27] H.B. Huang, Y.Y. Mao, Y.L. Ying, Y. Liu, L.W. Sun, X.S. Peng, Salt concentration, pH and pressure controlled separation of small molecules through lamellar graphene oxide membranes, Chem. Commun. 49 (53) (2013) 5963-5965.[28] X. Huang, Z.Y. Yin, S.X. Wu, X.Y. Qi, Q.Y. He, Q.C. Zhang, Q.Y. Yan, F. Boey, H. Zhang, Graphene-based materials: Synthesis, characterization, properties, and applications, Small 7 (14) (2011) 1876-1902.[29] G.P. Liu, W. Wei, W.Q. Jin, Pervaporation membranes for biobutanol production, ACS Sustainable Chem. Eng. 2 (4) (2014) 546-560.[30] T.A. Peters, C.H.S. Poeth, N.E. Benes, H. Buijs, F.F. Vercauteren, J.T.F. Keurentjes, Ceramic-supported thin PVA pervaporation membranes combining high flux and high selectivity; Contradicting the flux-selectivity paradigm, J. Membr. Sci. 276 (1-2) (2006) 42-50.[31] Y.X. Zhu, S.S. Xia, G.P. Liu, W.Q. Jin, Preparation of ceramic-supported poly(vinyl alcohol)-chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures, J. Membr. Sci. 349 (1-2) (2010) 341-348.[32] T. Gallego-Lizon, E. Edwards, G. Lobiundo, L.F. dos Santos, Dehydration of water/tbutanol mixtures by pervaporation: Comparative study of commercially available polymeric, microporous silica and zeolite membranes, J. Membr. Sci. 197 (1-2) (2002) 309-319.[33] H.M. van Veen, Y.C. van Delft, C.W.R. Engelen, P. Pex, Dewatering of organics by pervaporation with silica membranes, Sep. Purif. Technol. 22-3 (1-3) (2001) 361-366.[34] H.L. Castricum, A. Sah, R. Kreiter, D.H.A. Blank, J.F. Vente, J.E. ten Elshof, Hybrid ceramic nanosieves: Stabilizing nanopores with organic links, Chem. Commun. 9 (2008) 1103-1105.[35] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23 (29) (2013) 3693-3700.[36] D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Processable aqueous dispersions of graphene nanosheets, Nat. Nanotechnol. 3 (2) (2008) 101-105.[37] X.J. Shu, X.R. Wang, Q.Q. Kong, X.H. Gu, N.P. Xu, High-flux MFI zeolite membrane supported on YSZ hollow fiber for separation of ethanol/water, Ind. Eng. Chem. Res. 51 (37) (2012) 12073-12080.[38] D.P. Suhas, A.V. Raghu, H.M. Jeong, T.M. Aminabhavi, Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique, RSC Adv. 3 (38) (2013) 17120-17130.[39] D.R. Dreyer, S.Murali, Y. Zhu, R.S. Ruoff, C.W. Bielawski, Reduction of graphite oxide using alcohols, J. Mater. Chem. 21 (10) (2011) 3443.[40] A. Buchsteiner, A. Lerf, J. Pieper,Water dynamics in graphite oxide investigated with neutron scattering, J. Phys. Chem. B 110 (45) (2006) 22328-22338.[41] J. Zhu, C.M. Andres, J. Xu, A. Ramamoorthy, T. Tsotsis, N.A. Kotov, Pseudonegative thermal expansion and the state of water in graphene oxide layered assemblies, ACS Nano 6 (9) (2012) 8357-8365.[42] K.S. Andrikopoulos, G. Bounos, D. Tasis, L. Sygellou, V. Drakopoulos, G.A. Voyiatzis, The effect of thermal reduction on the water vapor permeation in graphene oxide membranes, Adv. Mater. Interfaces 1 (8) (2014) 1-8.[43] J.F. Shen, Y.Z. Hu, M. Shi, X. Lu, C. Qin, C. Li, M.X. Ye, Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets, Chem. Mater. 21 (2009) 3514-3520.[44] R.L. Liu, G. Arabale, J. Kim, K. Sun, Y.W. Lee, C.K. Ryu, C.G. Lee, Graphene oxidemembrane for liquid phase organic molecular separation, Carbon 77 (2014) 933-938.[45] W.F. Guo, T.S. Chung, Study and characterization of the hysteresis behavior of polyimide membranes in the thermal cycle process of pervaporation separation, J. Membr. Sci. 253 (1-2) (2005) 13-22.[46] Y. Wang, S.H. Goh, T.S. Chung, P. Na, Polyamide-imide/polyetherimide dual-layer hollow fiber membranes for pervaporation dehydration of C1-C4 alcohols, J. Membr. Sci. 326 (1) (2009) 222-233.[47] G. Zhang, X. Song, S. Ji, N.Wang, Z. Liu, Self-assembly of inner skin hollow fiber polyelectrolyte multilayer membranes by a dynamic negative pressure layer-by-layer technique, J. Membr. Sci. 325 (1) (2008) 109-116.[48] G.M. Shi, T. Yang, T.S. Chung, Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols, J. Membr. Sci. 415 (2012) 577-586.[49] Y.K. Ong, H. Wang, T.S. Chung, A prospective study on the application of thermally rearranged acetate-containing polyimide membranes in dehydration of biofuels via pervaporation, Chem. Eng. Sci. 79 (2012) 41-53.[50] S. Biduru, S. Sridhar, G.S. Murthy, S. Mayor, Pervaporation of tertiary butanol/water mixtures through chitosan membranes cross-linked with toluylene diisocyanate, J. Chem. Technol. Biotechnol. 80 (12) (2005) 1416-1424.[51] T. Gallego-Lizon, E. Edwards, G. Lobiundo, L. Freitas dos Santos, Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes, J. Membr. Sci. 197 (1-2) (2002) 309-319. |
[1] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[2] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[3] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[4] | Sinu Poolachira, Sivasubramanian Velmurugan. Graphene oxide/hydrotalcite modified polyethersulfone nanohybrid membrane for the treatment of lead ion from battery industrial effluent [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 253-261. |
[5] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 42-50. |
[6] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 176-181. |
[7] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[8] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[9] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 70-79. |
[10] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[11] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[12] | Yingxiang Ni, Can Yuan, Shilong Li, Jian Lu, Lei Yan, Wei Gu, Weihong Xing, Wenheng Jing. Temperature-induced hydrophobicity transition of MXene membrane for directly preparing W/O emulsions [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 59-62. |
[13] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
[14] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[15] | Zhengchi Yin, Xiaoke Wu, Yanwei Yang, Huayu Zhang, Wangtao Li, Ruimin Zhu, Qiancheng Zheng, Zhengbao Wang. Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 101-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||