[1] U. Kruger, L. Xie, Advances in Statistical Monitoring of Complex Multivariate Processes:With Applications in Industrial Process Control, Wiley Press, Chichester, England, 2012.[2] S.J. Zhao, J. Zhang, Y.M. Xu, Performance monitoring of processes with multiple operating modes through multiple PLS models, J. Process Control 16(2006) 763-772.[3] Z.B. Zhu, Z.H. Song, A. Palazoglu, Process pattern construction and multi-mode monitoring, J. Process Control 22(2012) 247-262.[4] C.H. Zhao, Concurrent phase partition and between-mode statistical analysis for multimode and multiphase batch process monitoring, AICHE J. 60(2014) 559-573.[5] S. Natarajan, R. Srinivasan, Multi-model based process condition monitoring of offshore oil and gas production process, Chem. Eng. Res. Des. 88(2010) 572-591.[6] S.J. Zhao, J. Zhang, Y.M. Xu, Monitoring of processes with multiple operating modes through multiple principal component analysis models, Ind. Eng. Chem. Res. 43(2004) 7025-7035.[7] T. Feital, U. Kruger, J. Dutra, J.C. Pinto, E.L. Lima, Modeling and performance monitoring of multivariate multimodal processes, AICHE J. 59(2013) 1557-1569.[8] J. Yu, S.J. Qin, Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models, AICHE J. 54(2008) 1811-1829.[9] X. Xie, H.B. Shi, Multimode process monitoring based on Fuzzy C-means in locality preserving projection subspace, Chin. J. Chem. Eng. 20(2012) 1174-1179.[10] Z.Q. Ge, Z.H. Song, Mixture Bayesian regularization method of PPCA for multimode process monitoring, AICHE J. 56(2010) 2838-2849.[11] Z.Q. Ge, Z.H. Song, Maximum-likelihood mixture factor analysismodel and its application for process monitoring, Chemom. Intell. Lab. Syst. 102(2010) 53-61.[12] H.D. Jin, Y.H. Lee, G. Lee, C.H. Han, Robust recursive principal component analysis modeling for adaptive monitoring, Ind. Eng. Chem. Res. 45(2006) 696-703.[13] Z.Q. Ge, Z.H. Song, Online monitoring of nonlinear multiple mode processes based on adaptive local model approach, Control. Eng. Pract. 16(2008) 1427-1437.[14] X. Xie, H.B. Shi, Dynamic multimode process modeling and monitoring using adaptive Gaussian mixture models, Ind. Eng. Chem. Res. 51(2012) 5497-5505.[15] J. Yu, A particle filter driven dynamic Gaussianmixture model approach for complex process monitoring and fault diagnosis, J. Process Control 22(2012) 778-788.[16] Y.X. Ma, H.B. Shi, H.H. Ma, M.L. Wang, Dynamic process monitoring using adaptive local outlier factor, Chemom. Intell. Lab. Syst. 127(2013) 89-101.[17] H.H. Ma, Y. Hu, H.B. Shi, Fault detection and identification based on the neighborhood standardized local outlier factor method, Ind. Eng. Chem. Res. 52(2013) 2389-2402.[18] K. Ghosh, R. Srinivasan, Immune system inspired approach to process monitoring and fault diagnosis, Ind. Eng. Chem. Res. 50(2011) 1637-1651.[19] Y.W. Zhang, C.Wang, R.Q. Lu,Modeling andmonitoring ofmultimode process based on subspace separation, Chem. Eng. Res. Des. 91(2013) 831-842.[20] Y.W. Zhang, S. Li, Modeling and monitoring of nonlinear multi-mode processes, Control. Eng. Pract. 22(2014) 194-204.[21] Y.W. Teh, S. Roweis, Automatic alignment of local representations, Adv. Neural Inf. Process. Syst. 15(2002) 841-848.[22] S. Yoon, J.F. MacGregor, Fault diagnosis with multivariate statistical models part I:using steady state fault signatures, J. Process Control 11(2001) 387-400. |