[1] L. Gan, X.F. Lu, Q.H. Wang, Experimental and theoretical study on hydrodynamic characteristics of tapered fluidized beds, Adv. Powder Technol. 25 (3) (2014) 824-831 [2] Y.M. Peng, L.T. Fan, Hydrodynamic characteristics of fluidization in liquid-solid tapered beds, Chem. Eng. Sci. 52 (14) (1997) 2277-2290 [3] D.C. Sau, S. Mohanty, K.C. Biswal, Minimum fluidization velocities and maximum bed pressure drops for gas-solid tapered fluidized beds, Chem. Eng. J. 132 (1-3) (2007) 151-157 [4] W.J. Bai, D.M. Chu, F. Wang, Y. He, Research on fluidization performance of different tapered fluidized bed reactors for fluidizing carbon nanotubes, Ind. Eng. Chem. Res. 59 (25) (2020) 11893-11904 [5] Z. Zou, W.M. Liu, D. Yan, Z.H. Xie, H.Z. Li, Q.S. Zhu, S.Y. He, CFD simulations of tapered bubbling/turbulent fluidized beds with/without gas distributor based on the structure-based drag model, Chem. Eng. Sci. 202 (2019) 157-168 [6] D.C. Sau, S. Mohanty, K.C. Biswal, Prediction of critical fluidization velocity and maximum bed pressure drop for binary mixture of regular particles in gas-solid tapered fluidized beds, Chem. Eng. Process.:Process. Intensif. 47 (12) (2008) 2114-2120 [7] M.H. Khani, Models for prediction of hydrodynamic characteristics of gas-solid tapered and mini-tapered fluidized beds, Powder Technol. 205 (1-3) (2011) 224-230 [8] C.D. Scott, C.W. Hancher, Use of a tapered fluidized bed as a continuous bioreactor, Biotechnol. Bioeng. 18 (10) (1976) 1393-1403 [9] C.S. Wu, J.S. Huang, R. Ohara, Hydrodynamics of tapered anaerobic fluidized beds for metabolic gas production, Chem. Eng. J. 148 (2-3) (2009) 279-289 [10] F. Wei, Q. Zhang, W.Z. Qian, H. Yu, Y. Wang, G.H. Luo, G.H. Xu, D.Z. Wang, The mass production of carbon nanotubes using a nano-agglomerate fluidized bed reactor:A multiscale space-time analysis, Powder Technol. 183 (1) (2008) 10-20 [11] Zhang Q, Huang JQ, Zhao MQ, Qian WZ, Wei F, Carbon nanotube mass production:Principles and processes, ChemSusChem 4 (7) (2011) 864-889 [12] K.A. Shah, B.A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition:A review on carbon sources, catalysts and substrates, Mater. Sci. Semicond. Process. 41 (2016) 67-82 [13] H. Yu, Q.F. Zhang, G.S. Gu, Y. Wang, G.H. Luo, F. Wei, Hydrodynamics and gas mixing in a carbon nanotube agglomerate fluidized bed, AIChE J. 52 (12) (2006) 4110-4123 [14] P. Mahanandia, V.P. Arya, K.K. Nanda, P.V. Bhotla, S.V. Subramanyam, Preparation temperature effect on the synthesis of various carbon nanostructures, Mater. Sci. Eng.:B 164 (3) (2009) 140-150 [15] N. Yang, S.K. Youn, C.E. Frouzakis, H.G. Park, An effect of gas-phase reactions on the vertically aligned CNT growth by temperature gradient chemical vapor deposition, Carbon 130 (2018) 607-613 [16] S.W. Jeong, J. Kim, D.H. Lee, Effect of operating variables on synthesis of multi-walled carbon nanotubes in fluidized beds, Chem. Eng. Sci. 134 (2015) 496-503 [17] S.W. Jeong, J.H. Lee, J. Kim, D.H. Lee, Fluidization behaviors of different types of multi-walled carbon nanotubes in gas-solid fluidized beds, J. Ind. Eng. Chem. 35 (2016) 217-223 [18] Antonio Busciglio, Giuseppa Vella, Giorgio Micale. Analysis of the bubbling behaviour of 2D gas solid fluidized beds Part I.Digital image analysis technique. Chem. Eng. J. 140 (1/3) (2008) 398-413 [19] C. Sobrino, A. Acosta-Iborra, D. Santana, M. de Vega, Bubble characteristics in a bubbling fluidized bed with a rotating distributor, Int. J. Multiph. Flow 35 (10) (2009) 970-976 [20] C.N. Lim, M.A. Gilbertson, A.J.L. Harrison, Bubble distribution and behaviour in bubbling fluidised beds, Chem. Eng. Sci. 62 (1-2) (2007) 56-69 [21] T.W. Asegehegn, M. Schreiber, H.J. Krautz, Investigation of bubble behavior in fluidized beds with and without immersed horizontal tubes using a digital image analysis technique, Powder Technol. 210 (3) (2011) 248-260 [22] G.R. Caicedo, J.J.P. Marqués, M.G. Ruız, J.G. Soler, A study on the behaviour of bubbles of a 2D gas-solid fluidized bed using digital image analysis, Chem. Eng. Process.:Process. Intensif. 42 (1) (2003) 9-14 [23] P.P. Wang, J.J. Cilliers, S.J. Neethling, P.R. Brito-Parada, The behavior of rising bubbles covered by particles, Chem. Eng. J. 365 (2019) 111-120 [24] J.X. Zhu, Development of particle test system based on imaging processing technique and study on mixing characteristic of particles in pipe fluidized bed, Ph. D. Thesis, Zhejiang Univ., China, 2004 [25] H.B. Xu, W.Q. Zhong, Y.J. Shao, A.B. Yu, Experimental study on mixing behaviors of wet particles in a bubbling fluidized bed, Powder Technol. 340 (2018) 26-33 [26] D. Santana, S. Nauri, A. Acosta, N. García, A. Macías-Machín, Initial particle velocity spatial distribution from 2-D erupting bubbles in fluidized beds, Powder Technol. 150 (1) (2005) 1-8 [27] T. Akiyama, T. Iguchi, K. Aoki, K. Nishimoto, A fractal analysis of solids mixing in two-dimensional vibrating particle beds, Powder Technol. 97 (1) (1998) 63-71 [28] R.R. Filgueira, L.L. Fournier, C.I. Cerisola, P. Gelati, M.G. García, Particle-size distribution in soils:A critical study of the fractal model validation, Geoderma 134 (3-4) (2006) 327-334 [29] M. Tanaka, M. Komagata, M. Tsukada, H. Kamiya, Fractal analysis of the influence of surface roughness of toner particles on their flow properties and adhesion behavior, Powder Technol. 186 (1) (2008) 1-8 [30] Y. Tatek, S. Stoll, L. Ouali, E. Pefferkorn, Structure and cohesion of weakly agglomerated fractal systems, Powder Technol. 143-144 (2004) 117-129 [31] W.J. Bai, D.M. Chu, Y. He, Bubble characteristic of carbon nanotubes growth process in a tapered fluidized bed reactor without a distributor, Chem. Eng. J. 407 (2021) 126792 [32] A. Widyatama, O. Dinaryanto, Indarto, Deendarlianto, The development of image processing technique to study the interfacial behavior of air-water slug two-phase flow in horizontal pipes, Flow Meas. Instrum. 59 (2018) 168-180 [33] T.W. Asegehegn, M. Schreiber, H.J. Krautz, Influence of two- and three-dimensional simulations on bubble behavior in gas-solid fluidized beds with and without immersed horizontal tubes, Powder Technol. 219 (2012) 9-19 [34] P. Chakrawarty, G. Bhatnagar, Image thresholding based on local activity feature matrix, Optik 127 (20) (2016) 9037-9045 [35] B. Mandelbrot, The Fractal Geometry of the Nature. Shanghai Far East Publishers, Shanghai, 1998 [36] X.F. Fan, Z.F. Yang, D.J. Parker, B. Armstrong, Prediction of bubble behaviour in fluidised beds based on solid motion and flow structure, Chem. Eng. J. 140 (1-3) (2008) 358-369 [37] J.R. Grace, D. Harrison, The distribution of bubbles within a gas-fluidized bed, Inst. Chem. Eng. Symp. Ser. 30 (1969) 105-125 [38] R.C. Darton, R.D. LaNauze, J.F. Davidson, D. Harrison, Bubble growth due to coalescence in fluidised beds, Trans. Inst. Chem. Eng, 55 (1977) 274-280 [39] S. Cooper, C.J. Coronella, CFD simulations of particle mixing in a binary fluidized bed, Powder Technol. 151 (1-3) (2005) 27-36 [40] A. Busciglio, G. Vella, G. Micale, L. Rizzuti, Experimental analysis of bubble size distributions in 2D gas fluidized beds, Chem. Eng. Sci. 65 (16) (2010) 4782-4791 [41] C.X. Zhang, P.L. Li, C. Lei, W.Z. Qian, F. Wei, Experimental study of non-uniform bubble growth in deep fluidized beds, Chem. Eng. Sci. 176 (2018) 515-523 [42] C.X. Zhang, W.Z. Qian, F. Wei, Instability of uniform fluidization, Chem. Eng. Sci. 173 (2017) 187-195 [43] Y. Luo, Z.X. Ma, Q.X. Huang, J.X. Zhu, F. Wang, J.Q. Zhu, J.H. Yan, M.J. Ni, Analysis of the Relationship between the Fractal Dimension of Fluidized Bed Images and Particle Movement Degree, Power System Engineering, 20(5) (2004) 20-23 |