Chin.J.Chem.Eng. ›› 2016, Vol. 24 ›› Issue (3): 331-338.DOI: 10.1016/j.cjche.2015.11.024
• FLUID DYNAMICS AND TRANSPORT PHENOMENA • Next Articles
Hua Xie1, Zongchang Zhao1, Jianhua Zhao1, Hongtao Gao2
Received:
2015-06-30
Revised:
2015-09-27
Online:
2016-04-08
Published:
2016-03-28
Supported by:
Supported by the National Natural Science Foundation of China(51376036).
Hua Xie, Zongchang Zhao, Jianhua Zhao, Hongtao Gao. Measurement of thermal conductivity, viscosity and density of ionic liquid [EMIM][DEP]-based nanofluids[J]. Chin.J.Chem.Eng., 2016, 24(3): 331-338.
Hua Xie, Zongchang Zhao, Jianhua Zhao, Hongtao Gao. [J]. Chinese Journal of Chemical Engineering, 2016, 24(3): 331-338.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2015.11.024
[1] C.Z. Zhuo, C.H.M. Machielsen, Thermophysical properties of the trifluoroethanol-pyrrolidone system for absorption heat transformers, Int. J. Refrig. 16(5)(1993) 357-363.[2] A. Coronas, M. Vallés, S.K. Chaudhari, Absorption heat pump with the TFE-TEGDME and TFE-H2O-TEGDME systems, Appl. Therm. Eng. 16(4)(1996) 335-345.[3] X.L. Yuan, X.D. Zhang, X.L. Li, H.Q. Fan, Z.C. Zhao, Corrosion of 316L stainless steel in ionic liquid working fluids, Corros. Eng. Sci. Technol. 48(5)(2013) 388-394.[4] B. Wu, R.G. Reddy, R.D. Rogers, Novel ionic liquid thermal storage for solar thermal electric power system, Sol. Eng.(2001) 445-452.[5] C.D.Wilfred, C.F. Kiat, Z. Man, Extraction of dibenzothiophene from dodecane using ionic liquids, Fuel Process. Technol. 93(1)(2012) 85-89.[6] Y.S. Kim,W.Y. Choi, J.H. Jang, K.P. Yoo, C.S. Lee, Solubility measurement and prediction of carbon dioxide in ionic liquids, Fluid Phase Equilib. 228(2005) 439-445.[7] A.K. Yadav, M. Kumar, T. Yadav, An ionic liquid mediated one-pot synthesis of substituted thiazolidinones and benzimidazoles, Tetrahedron Lett. 50(35)(2009) 5031-5034.[8] Y. Liu, Z.C. Liu, C.M. Xu, Study on room temperature ionic liquid-catalyzed alkylation of isobutane with butene in pilot-plant level, Chem. Ind. Eng. Prog. 24(6)(2005) 647-654.[9] K.S. Kim, S.Y. Park, S. Choi, H. Lee, Vapor pressures of the 1-butyl-3-methylimidazolium bromide plus water, 1-butyl-3-methylimidazoliumtetrafluoroborate plus water, and 1-(2-hydroxyethyl)-3-methylimidazolium tetrafluoroborate plus water systems, J. Chem. Eng. Data 49(6)(2004) 1550-1553.[10] Z.B. He, Z.C. Zhao, X.D. Zhang, Thermodynamic properties of new heat pump working pairs:1,3-Dimethylimidazolium dimethylphosphate and water, ethanol and methanol, Fluid Phase Equilib. 298(1)(2010) 83-91.[11] G.L. Zuo, Z.C. Zhao, S.H. Yan, Thermodynamic properties of a new working pair:1-Ethyl-3-methylimidazolium ethylsulfate and water, Chem. Eng. J. 156(3)(2010) 613-617.[12] J. Ren, Z.C. Zhao, X. Zhang, D., Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate, J. Chem. Thermodyn. 43(4)(2011) 576-583.[13] Zhao Zongchang, Yan Shuanghua, Zhang Xiaodong, Zuo Guilan, He Zongbao, Ren Jing, Measurement and correlation of vapor pressure for binary systems:[EMIM][DEP]+H2O/C2H5OH as working pair, J. Dalian Univ. Technol.(Chin.) 50(5)(2010) 638-642.[14] Xiaodong Zhang, Dapeng Hu, Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair, Appl. Therm. Eng. 31(2011) 3316-3321.[15] Xiaodong Zhang, Dapeng Hu, Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water, Appl. Therm. Eng. 37(2012) 129-135.[16] A.P.C. Ribeiro, M.J.V. Lourenço, C.A. Nieto de Castro, Thermal conductivity of ionanofluids, 7th Symp. Thermophysical Properties, Boulder, USA 2009, pp. 21-26.[17] C.A. Nieto de Castro, M.J.V. Lourenco, A.P.C. Ribeiro, E. Langa, S.I.C. Vieira, Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids, J. Chem. Eng. Data 55(2)(2010) 653-661.[18] C.A. Nieto de Castro, S.M.S. Murshed,M.J.V. Lourenço, F.J.V. Santos, M.L.M. Lopes, Enhanced thermal conductivity and specific heat capacity of carbon nanotubes ionanofluids, Int. J. Therm. Sci. 62(2012) 34-39.[19] B. Wang, X. Wang, W. Lou, J. Hao, Ionic liquid-based stable nanofluids containing gold nanoparticles, J. Colloid Interface Sci. 362(1)(2011) 5-14.[20] A.G.M. Ferreira, P.N. Simões, A.F. Ferreira, M.A. Fonseca, M.S.A. Oliveira, et al., Transport and thermal properties of quaternary phosphonium ionic liquids and IoNanofluids, J. Chem. Thermodyn. 64(2013) 80-92.[21] T.C. Paul, A.M. Morshed, J.A. Khan, Nanoparticle enhanced ionic liquids(NEILS) as working fluid for the next generation solar collector, Procedia Eng. 56(2013) 631-636.[22] J. Liu, F.X. Wang, L. Zhang, X.M. Fang, Z.G. Zhang, Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids formedium-to-high-temperature applications, Renew. Energy 63(2014) 519-523.[23] Y. Nie, C.X. Li, A.J. Sun, Extractive desulfurization of gasoline using imidazoliumbased phosphoric ionic liquids, Energy Fuel 20(5)(2006) 2083-2087.[24] K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda, Chemical treatment of carbon nanotubes, Carbon 34(2)(1996) 279-281.[25] G.Q. Liu, L.X. Ma, Physical property handbook of chemistry and chemical engineering:Inorganic volume, Chemical Industry Press, Beijing, 2002.[26] K.B. Li, The discussion and analysis of heat conduction in liquid, Transp. Sci. Eng. 5(1989) 31-40.[27] J.C. Maxwell, third ed., A treatise on electricity and magnetism, vol. 1, Dover, New York, 1954.[28] R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fundam. 1(3)(1962) 187-191.[29] E. Yamada, T. Ota, Effective thermal conductivity of dispersed materials, Wärme Stoffübertragung 13(1-2)(1980) 27-37.[30] X. Zang, H. Gu, M. Fujii, Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles, Exp. Thermal Fluid Sci. 31(6)(2007) 593-599.[31] S.M.S. Murshed, K.C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci. 47(5)(2008) 560-568.[32] J.Manuel Bernal-García, A. Guzm?n-L?pez, A. Cabrales-Torres, Supplementary densities and viscosities of aqueous solutions of diethylene glycol from(283.15 to 353.15) K, J. Chem. Eng. Data 53(4)(2008) 1028-1031.[33] D.A. Drew, S.L. Passman, Theory of multicomponent fluids, Appl. Math. Sci. 135(1999).[34] H.C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys. 20(4)(1952) 571-581.[35] X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticles-fluid mixture, J. Thermophys. Heat Transf. 13(4)(1999) 474-480.[36] W. Duangthongsuk, S. Wongwises, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids, Exp. Thermal Fluid Sci. 33(4)(2009) 706-714.[37] S.H. Yan, The research on ionic liquid-[EMIM][DEP]+H2O/alcohol as new working pairs(Dissertation) Dalian University of Technology, 2009.[38] B. Wang, X. Wang, W. Lou, J. Hao, Rheological and tribological properties of ionic liquid-based nanofluids containing functionalized multi-walled carbon nanotubes, J. Phys. Chem. C 114(19)(2010) 8749-8754.[39] P. Hu, T.Y. Liu, H. Qian, P.P. Zhao, The research of the viscosity of SiO2-HTF nanofluids, Conference on China engineering thermophysics, 2014.[40] S.G. Wang, Chemical engineering principle, Higher Education Press, Beijing, 2002.[41] J. Jacquemin, P. Husson, A.A.H. Padua, V.Majer, Density and viscosity of several pure and water-saturated ionic liquids, Green Chem. 8(2)(2006) 172-180. |
[1] | Yaqi Ren, Shuqian Xia. Synthesis and mechanism analysis of a new oil soluble viscosity reducer for flow improvement of Chenping heavy oil [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 58-67. |
[2] | Anil Kumar Nain. Study of intermolecular interactions in binary mixtures of methyl acrylate with benzene and methyl substituted benzenes at different temperatures: An experimental and theoretical approach [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 212-238. |
[3] | Liuting Zhang, Haijie Yu, Zhiyu Lu, Changhao Zhao, Jiaguang Zheng, Tao Wei, Fuying Wu, Beibei Xiao. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2 [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 343-352. |
[4] | Li Ma, Yongjin Cui, Lin Sheng, Chencan Du, Jian Deng, Guangsheng Luo. Determination of interfacial tension and viscosity under dripping flow in a step T-junction microdevice [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 210-218. |
[5] | Shabnam Ghahremanian, Abbas Abbassi, Zohreh Mansoori, Davood Toghraie. Effect of copper nanoparticles on thermal behavior of two-phase argon-copper nanofluid flow in rough nanochannels with focusing on the interface properties and heat transfer using molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 344-350. |
[6] | Yu-Liang Sun, Davood Toghraie, Omid Ali Akbari, Farzad Pourfattah, As'ad Alizadeh, Navid Ghajari, Mehran Aghajani. Thermal performance and entropy generation for nanofluid jet injection on a ribbed microchannel with oscillating heat flux: Investigation of the first and second laws of thermodynamics [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 450-464. |
[7] | Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 22-28. |
[8] | Jipeng Li, Huan Xu, Jingqi Wang, Yujun Wang, Diannan Lu, Jichang Liu, Jianzhong Wu. Theoretical insights on the hydration of quinones as catholytes in aqueous redox flow batteries [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 72-78. |
[9] | Feng Liu, Jing Liu, Yu Li, Ruixue Fang. Theoretical study of reduction mechanism of Fe2O3 by H2 during chemical looping combustion [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 175-183. |
[10] | Chengxiang Shi, Jisheng Xu, Lun Pan, Xiangwen Zhang, Ji-Jun Zou. Perspective on synthesis of high-energy-density fuels: From petroleum to coal-based pathway [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 83-91. |
[11] | Huaizhu Li, Lingxue Kong, Jin Bai, Zongqing Bai, Zhenxing Guo, Wen Li. Modification of ash flow properties of coal rich in calcium and iron by coal gangue addition [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 239-246. |
[12] | Yang Liu, Yangbo Deng, Junrui Shi, Rujie Xiao, Houping Li. Pore-level numerical simulation of methane-air combustion in a simplified two-layer porous burner [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 87-96. |
[13] | Sunita Malik, Poonam Jangra Darolia, S. K. Garg, V. K. Sharma. Densities and excess molar volumes of mixtures containing diesel, biodiesel and alkanols at temperatures from 288.15 to 313.15 K [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 198-207. |
[14] | Amin Shahsavar, Majid Jafari, Pouyan Talebizadehsardari, Davood Toghraie. Hydrothermal and entropy generation specifications of a hybrid ferronanofluid in microchannel heat sink embedded in CPUs [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 27-38. |
[15] | Farzaneh Rezaei, Saeed Jafari, Abdolhossein Hemmati-Sarapardeh, Amir H. Mohammadi. Modeling viscosity of methane, nitrogen, and hydrocarbon gas mixtures at ultra-high pressures and temperatures using group method of data handling and gene expression programming techniques [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 431-445. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||