Chinese Journal of Chemical Engineering ›› 2022, Vol. 48 ›› Issue (8): 106-115.DOI: 10.1016/j.cjche.2021.04.016
Previous Articles Next Articles
Fenfen You1, Qing-Hong Shi1,2
Received:
2021-02-21
Revised:
2021-04-23
Online:
2022-09-30
Published:
2022-08-28
Contact:
Qing-Hong Shi,E-mail:qhshi@tju.edu.cn
Supported by:
Fenfen You1, Qing-Hong Shi1,2
通讯作者:
Qing-Hong Shi,E-mail:qhshi@tju.edu.cn
基金资助:
Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation[J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 106-115.
Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation[J]. 中国化学工程学报, 2022, 48(8): 106-115.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.04.016
[1] A.J. Alpert, F.E. Regnier, Preparation of a porous microparticulatee anion-exchange chromatography support for proteins, J. Chromatogr. A, 185 (1979) 375-392 [2] A.J. Alpert, Cation-exchange high-performance liquid chromatography of proteins on poly(aspartic acid)-silica, J. Chromatogr., 266 (1983) 23-37 [3] W. Müller, New ion exchangers for the chromatography of biopolymers, J. Chromatogr. A, 510 (1990) 133-140 [4] M. Weitzhandler, D. Farnan, J. Horvath, J.S. Rohrer, R.W. Slingsby, N. Avdalovic, C. Pohl, Protein variant separations by cation-exchange chromatography on tentacle-type polymeric stationary phases, J. Chromatogr. A, 828 (1998) 365-372 [5] B.D. Bowes, H. Koku, K.J. Czymmek, A.M. Lenhoff, Protein adsorption and transport in dextran-modified ion-exchange media. I: Adsorption, J. Chromatogr. A, 1216 (2009) 7774-7784 [6] M.C. Stone, G. Carta, Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography, J. Chromatogr. A, 1146 (2007) 202-215 [7] L.-L. Yu, S.-P. Tao, X.-Y. Dong, Y. Sun, Protein adsorption to poly(ethylenimine)-modified Sepharose FF: I. A critical ionic capacity for drastically enhanced capacity and uptake kinetics, J. Chromatogr. A, 1305 (2013) 76-84 [8] H.-Y. Wang, Y. Sun, S.-L. Zhang, J. Luo, Q.-H. Shi, Fabrication of high-capacity cation-exchangers for protein chromatography by atom transfer radical polymerization, Biochem. Eng. J., 113 (2016) 19-29 [9] F. Dismer, J. Hubbuch, A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins, J. Chromatogr. A, 1149 (2007) 312-320 [10] N.B. Afeyan, N.F. Gordon, I. Mazsaroff, L. Varady, S.P. Fulton, Y.B. Yang, F.E. Regnier, Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography, J. Chromatogr., 519 (1990) 1-29 [11] A. Staby, M.B. Sand, R.G. Hansen, J.H. Jacobsen, L.A. Andersen, M. Gerstenberg, U.K. Bruus, I.H. Jensen, Comparison of chromatographic ion-exchange resins III. Strong cation-exchange resins, J. Chromatogr. A, 1034 (2004) 85-97 [12] Q.H. Shi, X. Zhou, Y. Sun, A novel superporous agarose medium for high-speed protein chromatography, Biotechnol. Bioeng., 92 (2005) 643-651 [13] T.M. Pabst, J. Thai, A.K. Hunter, Evaluation of recent Protein A stationary phase innovations for capture of biotherapeutics, J. Chromatogr. A, 1554 (2018) 45-60 [14] A.R. Ubiera, G. Carta, Radiotracer measurements of protein mass transfer: kinetics in ion exchange media, Biotechnol. J., 1 (2006) 665-674 [15] B.D. Bowes, A.M. Lenhoff, Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough, J. Chromatogr. A, 1218 (2011) 4698-4708 [16] A.M. Lenhoff, Protein adsorption and transport in polymer-functionalized ion-exchangers, J. Chromatogr. A, 1218 (2011) 8748-8759 [17] S.H.S. Koshari, N.J. Wagner, A.M. Lenhoff, Effects of Resin Architecture and Protein Size on Nanoscale Protein Distribution in Ion-Exchange Media, Langmuir, 34 (2018) 673-684 [18] F. Dismer, M. Petzold, J. Hubbuch, Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents, J. Chromatogr. A, 1194 (2008) 11-21 [19] L.-L. Yu, Q.-H. Shi, Y. Sun, Effect of dextran layer on protein uptake to dextran-grafted adsorbents for ion-exchange and mixed-mode chromatography, J. Sep. Sci., 34 (2011) 2950-2959 [20] R. Liu, Q. Shi, Protein retention in dextran-grafted cation exchange chromatography: The influence of pHs, counterions and polymer structure, Chin. J. Chem. Eng., 28 (2020) 1904-1910 [21] A. Xue, Y. Sun, Visualization and Modeling of Protein Adsorption and Transport in DEAE- and DEAE-Dextran-Modified Bare Capillaries, Aiche J., 65 (2019) 305-316 [22] Y. Tao, G. Carta, G. Ferreira, D. Robbins, Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers: II. Adsorption kinetics, J. Chromatogr. A, 1218 (2011) 1530-1537 [23] S.-L. Zhang, M. Zhao, W. Yang, J. Luo, Y. Sun, Q.-H. Shi, A novel polymer-grafted cation exchanger for high-capacity protein chromatography: The role of polymer architecture, Biochem. Eng. J., 128 (2017) 218-227 [24] M. Zhao, R. Liu, J. Luo, Y. Sun, Q. Shi, Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches, Front. Chem. Sci. Eng., 13 (2019) 120-132 [25] S. Wang, X. Li, Y. Sun, Poly(N,N-dimethylaminopropyl acrylamide)-grafted Sepharose FF: A new anion exchanger of very high capacity and uptake rate for protein chromatography, J. Chromatogr. A, 1597 (2019) 187-195 [26] R. Dong, S. Krishnan, B.A. Baird, M. Lindau, C.K. Ober, Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces, Biomacromolecules, 8 (2007) 3082-3092 [27] A. Rastogi, S. Nad, M. Tanaka, N. Da Mota, M. Tague, B.A. Baird, H.D. Abruna, C.K. Ober, Preventing Nonspecific Adsorption on Polymer Brush Covered Gold Electrodes Using a Modified ATRP Initiator, Biomacromolecules, 10 (2009) 2750-2758 [28] T.Y. Xiao Li, Camille Bishop, Coleman Smith, Moshe Dolejsi, Helou Xie, Kazue Kurihara, Paul F. Nealey, Engineering the anchoring behavior of nematic liquid crystals on a solid surface by varying the density of liquid crystalline polymer brushes, Soft Matter 14 (2018) 7569–7577. [29] R. Barbey, L. Lavanant, D. Paripovic, N. Schuewer, C. Sugnaux, S. Tugulu, H.-A. Klok, Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications, Chem. Rev., 109 (2009) 5437-5527 [30] X. Chu, J. Yang, G. Liu, J. Zhao, Swelling enhancement of polyelectrolyte brushes induced by external ions, Soft Matter, 10 (2014) 5568-5578 [31] A. Dolatshahi-Pirouz, K. Rechendorff, M.B. Hovgaard, M. Foss, J. Chevallier, F. Besenbacher, Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D, Colloid. Surface. B, 66 (2008) 53-59 [32] Y. Tapiero, J. Sánchez, B.L. Rivas, Interpenetrating polymers supported on microporous polypropylene membranes for the transport of chromium ions, Chem. J. Chem. Eng., 25 (2017) 938-946 [33] A. Salama, Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release, Int. J. Biol. Macromol., 108 (2018) 471-476 [34] C.G. Arges, K. Li, L. Zhang, Y. Kambe, G.-P. Wu, B. Lwoya, J.N.L. Albert, P.F. Nealey, R. Kumar, Ionic conductivity and counterion condensation in nanoconfined polycation and polyanion brushes prepared from block copolymer templates, Mol. Syst. Des. Eng., 4 (2019) 365-378 [35] R. Patel, W.S. Chi, S.H. Ahn, C.H. Park, H.-K. Lee, J.H. Kim, Synthesis of poly(vinyl chloride)-g-poly(3-sulfopropyl methacrylate) graft copolymers and their use in pressure retarded osmosis (PRO) membranes, Chem. Eng. J., 247 (2014) 1-8 [36] Z.H. Yang, J.A. Galloway, H.U. Yu, Protein interactions with poly(ethylene glycol) self-assembled monolayers on glass substrates: Diffusion and adsorption, Langmuir, 15 (1999) 8405-8411 [37] M. Ramstedt, N. Cheng, O. Azzaroni, D. Mossialos, H.J. Mathieu, W.T.S. Huck, Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications, Langmuir, 23 (2007) 3314-3321 [38] W.R. Glomm, O. Halskau, Jr., A.-M.D. Hanneseth, S. Volden, Adsorption behavior of acidic and basic proteins onto citrate-coated Au surfaces correlated to their native fold, stability, and pI, J. Phy. Chem. B, 111 (2007) 14329-14345 [39] M.S. Lord, M.H. Stenzel, A. Simmons, B.K. Milthorpe, Lysozyme interaction with poly(HEMA)-based hydrogel, Biomaterials, 27 (2006) 1341-1345 [40] D.Z. Shen, M.H. Huang, L.M. Chow, M.S. Yang, Kinetic profile of the adsorption and conformational change of lysozyme on self-assembled monolayers as revealed by quartz crystal resonator, Sensor. Actuat. B-Chem., 77 (2001) 664-670 [41] F. H??k, B. Kasemo, T. Nylander, C. Fant, K. Sott, H. Elwing, Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study, Anal. Chem., 73 (2001) 5796-5804 [42] F. H??k, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J.J. Ramsden, M. Textor, N.D. Spencer, P. Tengvall, J. Gold, B. Kasemo, A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation, Colloid. Surface. B, 24 (2002) 155-170 [43] J.B. Schlenoff, A.H. Rmaile, C.B. Bucur, Hydration contributions to association in polyelectrolyte multilayers and complexes: Visualizing hydrophobicity, J. Am. Chem. Soc., 130 (2008) 13589-13597 [44] K. Xu, M.M. Ouberai, M.E. Welland, A comprehensive study of lysozyme adsorption using dual polarization interferometry and quartz crystal microbalance with dissipation, Biomaterials, 34 (2013) 1461-1470 [45] G. Anand, S. Sharma, A.K. Dutta, S.K. Kumar, G. Belfort, Conformational Transitions of Adsorbed Proteins on Surfaces of Varying Polarity, Langmuir, 26 (2010) 10803-10811 [46] L. Zhang, L. Wang, Y.-T. Kao, W. Qiu, Y. Yang, O. Okobiah, D. Zhong, Mapping hydration dynamics around a protein surface, P. Natl. Acad. Sci. USA, 104 (2007) 18461-18466 [47] L. Zhang, Y. Yang, Y.-T. Kao, L. Wang, D. Zhong, Protein Hydration Dynamics and Molecular Mechanism of Coupled Water-Protein Fluctuations, J. Am. Chem. Soc., 131 (2009) 10677-10691 [48] N.M. Eren, G. Narsimhan, O.H. Campanella, Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation, Nanoscale, 8 (2016) 3326-3336 [49] P. Jia, M. He, Y. Gong, X. Chu, J. Yang, J. Zhao, Probing the Adjustments of Macromolecules during Their Surface Adsorption, Acs Appl. Mater. Inter., 7 (2015) 6422-6429 [50] J. Narayanan, A.S.A. Rasheed, J.R. Bellare, A small-angle X-ray scattering study of the structure of lysozyme-sodium dodecyl sulfate complexes, J. Colloid Interf. Sci., 328 (2008) 67-72 [51] O. Hollmann, C. Czeslik, Characterization of a planar poly(acrylic acid) brush as a materials coating for controlled protein immobilization, Langmuir, 22 (2006) 3300-3305 [52] N. Ishida, S. Biggs, Salt-induced structural behavior for poly(N-isopropylacryamide) grafted onto solid surface observed directly by AFM and QCM-D, Macromolecules, 40 (2007) 9045-9052 [53] N. Ishida, S. Biggs, Effect of Grafting Density on Phase Transition Behavior for Poly(N-isopropylacryamide) Brushes in Aqueous Solutions Studied by AFM and QCM-D, Macromolecules, 43 (2010) 7269-7276 [54] S. Belegrinou, I. Mannelli, P. Lisboa, F. Bretagnol, A. Valsesia, G. Ceccone, P. Colpo, H. Rauscher, F. Rossi, pH-dependent immobilization of proteins on surfaces functionalized by plasma-enhanced chemical vapor deposition of poly(acrylic acid)- and poly(ethylene oxide)-like films, Langmuir, 24 (2008) 7251-7261 [55] L. Yu, R. Xu, X. Dong, Y. Liu, Y. Sun, Protein adsorption to (3-acrylamido propyl) trimethyl ammonium chloride-grafted Sepharose gel: Charge density reduction via copolymerizing with electroneutral monomer drastically increases uptake rate, J. Chromatogr. A, 1629 (2020) 461483 |
[1] | Jun Li, Liqiang Zhang, Xiao Zhu, Mengze Zhang, Tai Feng, Xiqiang Zhao, Tao Wang, Zhanlong Song, Chunyuan Ma. Systematic investigation of SO2 adsorption and desorption by porous powdered activated coke: Interaction between adsorption temperature and desorption energy consumption [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 140-148. |
[2] | Hao Zhang, Daiwei Liu, Jiangbo Wen, Guangyu Sun, Chuanxian Li, Xinya Chen, Huihui Zhang, Ze Duan. Co-adsorption behaviors of asphaltenes and different flow improvers and their impacts on the interfacial viscoelasticity [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 149-157. |
[3] | Wei Liu, Xueting Sun, Xiaoyan Dong, Yan Sun. Chiral LVFFARK enantioselectively inhibits amyloid-β protein fibrillogenesis [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 227-235. |
[4] | Xinxin Zhao, Wenlong Xu, Shuang Chen, Huie Liu, Xiaofei Yan, Yan Bao, Zexin Liu, Fan Yang, Huan Zhang, Ping Yu. Fabrication of super-elastic graphene aerogels by ambient pressure drying and application to adsorption of oils [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 89-97. |
[5] | Jinglei Cui, Qian Wang, Jianming Gao, Yanxia Guo, Fangqin Cheng. The selective adsorption of rare earth elements by modified coal fly ash based SBA-15 [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 155-164. |
[6] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[7] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[8] | Yaling Li, Hao Ai, Liangzhi Qiao, Yinghong Wang, Kaifeng Du. Fabrication and characterization of hierarchical porous Ni2+ doped hydroxyapatite microspheres and their enhanced protein adsorption capacity [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 238-247. |
[9] | Minxia Liu, Dang Wu, Dongling Qin, Gang Yang. Spray-drying assisted layer-structured H2TiO3 ion sieve synthesis and lithium adsorption performance [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 258-267. |
[10] | Tao Sun, Mingjun Pang, Yang Fei. Numerical study on hydrodynamic characteristics of spherical bubble contaminated by surfactants under higher Reynolds numbers [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 268-283. |
[11] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 284-293. |
[12] | Jingsi Cui, Huanxi Xu, Yanfeng Ding, Jingjing Tian, Xu Zhang, Guanping Jin. Recovery of lithium using H4Mn3.5Ti1.5O12/reduced graphene oxide/polyacrylamide composite hydrogel from brine by Ads-ESIX process [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 20-28. |
[13] | Zhengguo Xu, Xiaochong Wang, Shuying Sun. Performance of a synthetic resin for lithium adsorption in waste liquid of extracting aluminum from fly-ash [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 115-123. |
[14] | Younki Cho, Ryan Lo, Keerthana Krishnan, Xiaolong Yin, Hossein Kazemi. Measuring absolute adsorption in porous rocks using oscillatory motions of a spring-mass system [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 131-139. |
[15] | Xinyu Chen, Shuo Shi, Ximei Han, Min Li, Ying Nian, Jing Sun, Wentao Zhang, Tianli Yue, Jianlong Wang. Insights into high-efficient removal of tetracycline by a codoped mesoporous carbon adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 148-156. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||