Chinese Journal of Chemical Engineering ›› 2022, Vol. 48 ›› Issue (8): 106-115.DOI: 10.1016/j.cjche.2021.04.016
Previous Articles Next Articles
Fenfen You1, Qing-Hong Shi1,2
Received:
2021-02-21
Revised:
2021-04-23
Online:
2022-09-30
Published:
2022-08-28
Contact:
Qing-Hong Shi,E-mail:qhshi@tju.edu.cn
Supported by:
Fenfen You1, Qing-Hong Shi1,2
通讯作者:
Qing-Hong Shi,E-mail:qhshi@tju.edu.cn
基金资助:
Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation[J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 106-115.
Fenfen You, Qing-Hong Shi. In situ investigation of lysozyme adsorption into polyelectrolyte brushes by quartz crystal microbalance with dissipation[J]. 中国化学工程学报, 2022, 48(8): 106-115.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.04.016
[1] A.J. Alpert, F.E. Regnier, Preparation of a porous microparticulatee anion-exchange chromatography support for proteins, J. Chromatogr. A, 185 (1979) 375-392 [2] A.J. Alpert, Cation-exchange high-performance liquid chromatography of proteins on poly(aspartic acid)-silica, J. Chromatogr., 266 (1983) 23-37 [3] W. Müller, New ion exchangers for the chromatography of biopolymers, J. Chromatogr. A, 510 (1990) 133-140 [4] M. Weitzhandler, D. Farnan, J. Horvath, J.S. Rohrer, R.W. Slingsby, N. Avdalovic, C. Pohl, Protein variant separations by cation-exchange chromatography on tentacle-type polymeric stationary phases, J. Chromatogr. A, 828 (1998) 365-372 [5] B.D. Bowes, H. Koku, K.J. Czymmek, A.M. Lenhoff, Protein adsorption and transport in dextran-modified ion-exchange media. I: Adsorption, J. Chromatogr. A, 1216 (2009) 7774-7784 [6] M.C. Stone, G. Carta, Protein adsorption and transport in agarose and dextran-grafted agarose media for ion exchange chromatography, J. Chromatogr. A, 1146 (2007) 202-215 [7] L.-L. Yu, S.-P. Tao, X.-Y. Dong, Y. Sun, Protein adsorption to poly(ethylenimine)-modified Sepharose FF: I. A critical ionic capacity for drastically enhanced capacity and uptake kinetics, J. Chromatogr. A, 1305 (2013) 76-84 [8] H.-Y. Wang, Y. Sun, S.-L. Zhang, J. Luo, Q.-H. Shi, Fabrication of high-capacity cation-exchangers for protein chromatography by atom transfer radical polymerization, Biochem. Eng. J., 113 (2016) 19-29 [9] F. Dismer, J. Hubbuch, A novel approach to characterize the binding orientation of lysozyme on ion-exchange resins, J. Chromatogr. A, 1149 (2007) 312-320 [10] N.B. Afeyan, N.F. Gordon, I. Mazsaroff, L. Varady, S.P. Fulton, Y.B. Yang, F.E. Regnier, Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography, J. Chromatogr., 519 (1990) 1-29 [11] A. Staby, M.B. Sand, R.G. Hansen, J.H. Jacobsen, L.A. Andersen, M. Gerstenberg, U.K. Bruus, I.H. Jensen, Comparison of chromatographic ion-exchange resins III. Strong cation-exchange resins, J. Chromatogr. A, 1034 (2004) 85-97 [12] Q.H. Shi, X. Zhou, Y. Sun, A novel superporous agarose medium for high-speed protein chromatography, Biotechnol. Bioeng., 92 (2005) 643-651 [13] T.M. Pabst, J. Thai, A.K. Hunter, Evaluation of recent Protein A stationary phase innovations for capture of biotherapeutics, J. Chromatogr. A, 1554 (2018) 45-60 [14] A.R. Ubiera, G. Carta, Radiotracer measurements of protein mass transfer: kinetics in ion exchange media, Biotechnol. J., 1 (2006) 665-674 [15] B.D. Bowes, A.M. Lenhoff, Protein adsorption and transport in dextran-modified ion-exchange media. II. Intraparticle uptake and column breakthrough, J. Chromatogr. A, 1218 (2011) 4698-4708 [16] A.M. Lenhoff, Protein adsorption and transport in polymer-functionalized ion-exchangers, J. Chromatogr. A, 1218 (2011) 8748-8759 [17] S.H.S. Koshari, N.J. Wagner, A.M. Lenhoff, Effects of Resin Architecture and Protein Size on Nanoscale Protein Distribution in Ion-Exchange Media, Langmuir, 34 (2018) 673-684 [18] F. Dismer, M. Petzold, J. Hubbuch, Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents, J. Chromatogr. A, 1194 (2008) 11-21 [19] L.-L. Yu, Q.-H. Shi, Y. Sun, Effect of dextran layer on protein uptake to dextran-grafted adsorbents for ion-exchange and mixed-mode chromatography, J. Sep. Sci., 34 (2011) 2950-2959 [20] R. Liu, Q. Shi, Protein retention in dextran-grafted cation exchange chromatography: The influence of pHs, counterions and polymer structure, Chin. J. Chem. Eng., 28 (2020) 1904-1910 [21] A. Xue, Y. Sun, Visualization and Modeling of Protein Adsorption and Transport in DEAE- and DEAE-Dextran-Modified Bare Capillaries, Aiche J., 65 (2019) 305-316 [22] Y. Tao, G. Carta, G. Ferreira, D. Robbins, Adsorption of deamidated antibody variants on macroporous and dextran-grafted cation exchangers: II. Adsorption kinetics, J. Chromatogr. A, 1218 (2011) 1530-1537 [23] S.-L. Zhang, M. Zhao, W. Yang, J. Luo, Y. Sun, Q.-H. Shi, A novel polymer-grafted cation exchanger for high-capacity protein chromatography: The role of polymer architecture, Biochem. Eng. J., 128 (2017) 218-227 [24] M. Zhao, R. Liu, J. Luo, Y. Sun, Q. Shi, Fabrication of high-capacity cation-exchangers for protein adsorption: Comparison of grafting-from and grafting-to approaches, Front. Chem. Sci. Eng., 13 (2019) 120-132 [25] S. Wang, X. Li, Y. Sun, Poly(N,N-dimethylaminopropyl acrylamide)-grafted Sepharose FF: A new anion exchanger of very high capacity and uptake rate for protein chromatography, J. Chromatogr. A, 1597 (2019) 187-195 [26] R. Dong, S. Krishnan, B.A. Baird, M. Lindau, C.K. Ober, Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces, Biomacromolecules, 8 (2007) 3082-3092 [27] A. Rastogi, S. Nad, M. Tanaka, N. Da Mota, M. Tague, B.A. Baird, H.D. Abruna, C.K. Ober, Preventing Nonspecific Adsorption on Polymer Brush Covered Gold Electrodes Using a Modified ATRP Initiator, Biomacromolecules, 10 (2009) 2750-2758 [28] T.Y. Xiao Li, Camille Bishop, Coleman Smith, Moshe Dolejsi, Helou Xie, Kazue Kurihara, Paul F. Nealey, Engineering the anchoring behavior of nematic liquid crystals on a solid surface by varying the density of liquid crystalline polymer brushes, Soft Matter 14 (2018) 7569–7577. [29] R. Barbey, L. Lavanant, D. Paripovic, N. Schuewer, C. Sugnaux, S. Tugulu, H.-A. Klok, Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications, Chem. Rev., 109 (2009) 5437-5527 [30] X. Chu, J. Yang, G. Liu, J. Zhao, Swelling enhancement of polyelectrolyte brushes induced by external ions, Soft Matter, 10 (2014) 5568-5578 [31] A. Dolatshahi-Pirouz, K. Rechendorff, M.B. Hovgaard, M. Foss, J. Chevallier, F. Besenbacher, Bovine serum albumin adsorption on nano-rough platinum surfaces studied by QCM-D, Colloid. Surface. B, 66 (2008) 53-59 [32] Y. Tapiero, J. Sánchez, B.L. Rivas, Interpenetrating polymers supported on microporous polypropylene membranes for the transport of chromium ions, Chem. J. Chem. Eng., 25 (2017) 938-946 [33] A. Salama, Chitosan based hydrogel assisted spongelike calcium phosphate mineralization for in-vitro BSA release, Int. J. Biol. Macromol., 108 (2018) 471-476 [34] C.G. Arges, K. Li, L. Zhang, Y. Kambe, G.-P. Wu, B. Lwoya, J.N.L. Albert, P.F. Nealey, R. Kumar, Ionic conductivity and counterion condensation in nanoconfined polycation and polyanion brushes prepared from block copolymer templates, Mol. Syst. Des. Eng., 4 (2019) 365-378 [35] R. Patel, W.S. Chi, S.H. Ahn, C.H. Park, H.-K. Lee, J.H. Kim, Synthesis of poly(vinyl chloride)-g-poly(3-sulfopropyl methacrylate) graft copolymers and their use in pressure retarded osmosis (PRO) membranes, Chem. Eng. J., 247 (2014) 1-8 [36] Z.H. Yang, J.A. Galloway, H.U. Yu, Protein interactions with poly(ethylene glycol) self-assembled monolayers on glass substrates: Diffusion and adsorption, Langmuir, 15 (1999) 8405-8411 [37] M. Ramstedt, N. Cheng, O. Azzaroni, D. Mossialos, H.J. Mathieu, W.T.S. Huck, Synthesis and characterization of poly(3-sulfopropylmethacrylate) brushes for potential antibacterial applications, Langmuir, 23 (2007) 3314-3321 [38] W.R. Glomm, O. Halskau, Jr., A.-M.D. Hanneseth, S. Volden, Adsorption behavior of acidic and basic proteins onto citrate-coated Au surfaces correlated to their native fold, stability, and pI, J. Phy. Chem. B, 111 (2007) 14329-14345 [39] M.S. Lord, M.H. Stenzel, A. Simmons, B.K. Milthorpe, Lysozyme interaction with poly(HEMA)-based hydrogel, Biomaterials, 27 (2006) 1341-1345 [40] D.Z. Shen, M.H. Huang, L.M. Chow, M.S. Yang, Kinetic profile of the adsorption and conformational change of lysozyme on self-assembled monolayers as revealed by quartz crystal resonator, Sensor. Actuat. B-Chem., 77 (2001) 664-670 [41] F. H??k, B. Kasemo, T. Nylander, C. Fant, K. Sott, H. Elwing, Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study, Anal. Chem., 73 (2001) 5796-5804 [42] F. H??k, J. Voros, M. Rodahl, R. Kurrat, P. Boni, J.J. Ramsden, M. Textor, N.D. Spencer, P. Tengvall, J. Gold, B. Kasemo, A comparative study of protein adsorption on titanium oxide surfaces using in situ ellipsometry, optical waveguide lightmode spectroscopy, and quartz crystal microbalance/dissipation, Colloid. Surface. B, 24 (2002) 155-170 [43] J.B. Schlenoff, A.H. Rmaile, C.B. Bucur, Hydration contributions to association in polyelectrolyte multilayers and complexes: Visualizing hydrophobicity, J. Am. Chem. Soc., 130 (2008) 13589-13597 [44] K. Xu, M.M. Ouberai, M.E. Welland, A comprehensive study of lysozyme adsorption using dual polarization interferometry and quartz crystal microbalance with dissipation, Biomaterials, 34 (2013) 1461-1470 [45] G. Anand, S. Sharma, A.K. Dutta, S.K. Kumar, G. Belfort, Conformational Transitions of Adsorbed Proteins on Surfaces of Varying Polarity, Langmuir, 26 (2010) 10803-10811 [46] L. Zhang, L. Wang, Y.-T. Kao, W. Qiu, Y. Yang, O. Okobiah, D. Zhong, Mapping hydration dynamics around a protein surface, P. Natl. Acad. Sci. USA, 104 (2007) 18461-18466 [47] L. Zhang, Y. Yang, Y.-T. Kao, L. Wang, D. Zhong, Protein Hydration Dynamics and Molecular Mechanism of Coupled Water-Protein Fluctuations, J. Am. Chem. Soc., 131 (2009) 10677-10691 [48] N.M. Eren, G. Narsimhan, O.H. Campanella, Protein adsorption induced bridging flocculation: the dominant entropic pathway for nano-bio complexation, Nanoscale, 8 (2016) 3326-3336 [49] P. Jia, M. He, Y. Gong, X. Chu, J. Yang, J. Zhao, Probing the Adjustments of Macromolecules during Their Surface Adsorption, Acs Appl. Mater. Inter., 7 (2015) 6422-6429 [50] J. Narayanan, A.S.A. Rasheed, J.R. Bellare, A small-angle X-ray scattering study of the structure of lysozyme-sodium dodecyl sulfate complexes, J. Colloid Interf. Sci., 328 (2008) 67-72 [51] O. Hollmann, C. Czeslik, Characterization of a planar poly(acrylic acid) brush as a materials coating for controlled protein immobilization, Langmuir, 22 (2006) 3300-3305 [52] N. Ishida, S. Biggs, Salt-induced structural behavior for poly(N-isopropylacryamide) grafted onto solid surface observed directly by AFM and QCM-D, Macromolecules, 40 (2007) 9045-9052 [53] N. Ishida, S. Biggs, Effect of Grafting Density on Phase Transition Behavior for Poly(N-isopropylacryamide) Brushes in Aqueous Solutions Studied by AFM and QCM-D, Macromolecules, 43 (2010) 7269-7276 [54] S. Belegrinou, I. Mannelli, P. Lisboa, F. Bretagnol, A. Valsesia, G. Ceccone, P. Colpo, H. Rauscher, F. Rossi, pH-dependent immobilization of proteins on surfaces functionalized by plasma-enhanced chemical vapor deposition of poly(acrylic acid)- and poly(ethylene oxide)-like films, Langmuir, 24 (2008) 7251-7261 [55] L. Yu, R. Xu, X. Dong, Y. Liu, Y. Sun, Protein adsorption to (3-acrylamido propyl) trimethyl ammonium chloride-grafted Sepharose gel: Charge density reduction via copolymerizing with electroneutral monomer drastically increases uptake rate, J. Chromatogr. A, 1629 (2020) 461483 |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[3] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[4] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[5] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[6] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[7] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[8] | Chaoqun Wu, Xun Liu, Fujun Yao, Xin Yang, Yan Wang, Wenyuan Hu. Crystalline-magnetism action in biomimetic mineralization of calcium carbonate [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 146-152. |
[9] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[10] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[11] | Huan-Huan Yin, Yin-Lei Han, Xiao Yan, Yi-Xin Guan. Proanthocyanidins prevent tau protein aggregation and disintegrate tau filaments [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 63-71. |
[12] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[13] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[14] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[15] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||