Chinese Journal of Chemical Engineering ›› 2022, Vol. 43 ›› Issue (3): 343-352.DOI: 10.1016/j.cjche.2021.10.016
Previous Articles Next Articles
Liuting Zhang1, Haijie Yu1, Zhiyu Lu1, Changhao Zhao1, Jiaguang Zheng1, Tao Wei1, Fuying Wu2, Beibei Xiao1
Received:
2021-08-06
Revised:
2021-10-12
Online:
2022-04-28
Published:
2022-03-28
Contact:
Jiaguang Zheng,E-mail:jgzheng@just.edu.cn;Tao Wei,E-mail:wt863@126.com;Beibei Xiao,E-mail:xiaobb11@mails.jlu.edu.cn
Supported by:
Liuting Zhang1, Haijie Yu1, Zhiyu Lu1, Changhao Zhao1, Jiaguang Zheng1, Tao Wei1, Fuying Wu2, Beibei Xiao1
通讯作者:
Jiaguang Zheng,E-mail:jgzheng@just.edu.cn;Tao Wei,E-mail:wt863@126.com;Beibei Xiao,E-mail:xiaobb11@mails.jlu.edu.cn
基金资助:
Liuting Zhang, Haijie Yu, Zhiyu Lu, Changhao Zhao, Jiaguang Zheng, Tao Wei, Fuying Wu, Beibei Xiao. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2[J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 343-352.
Liuting Zhang, Haijie Yu, Zhiyu Lu, Changhao Zhao, Jiaguang Zheng, Tao Wei, Fuying Wu, Beibei Xiao. The effect of different Co phase structure (FCC/HCP) on the catalytic action towards the hydrogen storage performance of MgH2[J]. 中国化学工程学报, 2022, 43(3): 343-352.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.10.016
[1] R. Bardhan, A.M. Ruminski, A. Brand, J.J. Urban, Magnesium nanocrystal-polymer composites:A new platform for designer hydrogen storage materials, Energy Environ. Sci. 4 (12) (2011) 4882.https://doi.org/10.1039/c1ee02258j [2] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (6861) (2001) 353-358.https://www.ncbi.nlm.nih.gov/pubmed/11713542/ [3] M. Pudukudy, Z. Yaakob, M. Mohammad, B. Narayanan, K. Sopian, Renewable hydrogen economy in Asia-Opportunities and challenges:An overview, Renew. Sustain. Energy Rev. 30 (2014) 743-757.http://dx.doi.org/10.1016/j.rser.2013.11.015 [4] S.Y. Liu, P. Kundu, T.W. Huang, Y.J. Chuang, F.G. Tseng, Y. Lu, M.L. Sui, F.R. Chen, Quasi-2D liquid cell for high density hydrogen storage, Nano Energy 31 (2017) 218-224.http://dx.doi.org/10.1016/j.nanoen.2016.11.017 [5] Y.H. Sun, C.Q. Shen, Q.W. Lai, W. Liu, D.W. Wang, K.F. Aguey-Zinsou, Tailoring magnesium based materials for hydrogen storage through synthesis:Current state of the art, Energy Storage Mater. 10 (2018) 168-198.http://dx.doi.org/10.1016/j.ensm.2017.01.010 [6] H. Zhou, H. Wang, A.D. Sadow, I.I. Slowing, Toward hydrogen economy:Selective guaiacol hydrogenolysis under ambient hydrogen pressure, Appl. Catal. B:Environ. 270 (2020) 118890.http://dx.doi.org/10.1016/j.apcatb.2020.118890 [7] K.J. Jeon, H.R. Moon, A.M. Ruminski, B. Jiang, C. Kisielowski, R. Bardhan, J.J. Urban, Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts, Nat Mater 10 (4) (2011) 286-290.https://www.ncbi.nlm.nih.gov/pubmed/21399630/ [8] N. Juahir, N.S. Mustafa, A.M. Sinin, M. Ismail, Improved hydrogen storage properties of MgH2 by addition of Co2NiO nanoparticles, RSC Adv. 5 (75) (2015) 60983-60989.https://doi.org/10.1039/c5ra07094e [9] M. Konarova, A. Tanksale, J. Norberto Beltramini, Q.L. Gao, Effects of nano-confinement on the hydrogen desorption properties of MgH2, Nano Energy 2(1) (2013) 98-104. http://dx.doi.org/10.1016/j.nanoen.2012.07.024. [10] L.S. Xie, J.S. Li, T.B. Zhang, L. Song, H.C. Kou, Microstructure and hydrogen storage properties of Mg-Ni-Ce alloys with a long-period stacking ordered phase, J. Power Sources 338 (2017) 91-102.http://dx.doi.org/10.1016/j.jpowsour.2016.11.025 [11] Y.Q. Lei, Y.M. Wu, Q.M. Yang, J. Wu, Q.D. Wang, Electrochemical behaviour of some mechanically alloyed Mg-Ni-based amorphous hydrogen storage alloys, Zeitschrift Für Physikalische Chemie 183 (1-2) (1994) 379-384.https://doi.org/10.1524/zpch.1994.183.part_1_2.379 [12] Q. Li, Q. Luo, Q.F. Gu, Insights into the composition exploration of novel hydrogen storage alloys:Evaluation of the Mg-Ni-Nd-H phase diagram, J. Mater. Chem. A 5 (8) (2017) 3848-3864.https://doi.org/10.1039/c6ta10090b [13] M.G. Verón, H. Troiani, F.C. Gennari, Synergetic effect of Co and carbon nanotubes on MgH2 sorption properties, Carbon 49 (7) (2011) 2413-2423. http://dx.doi.org/10.1016/j.carbon.2011.02.008 [14] Y.J. Chai, Z.Y. Liu, H.N. Gao, Z.Y. Zhao, N. Wang, D.L. Hou, Microstructure and hydrogen storage properties of porous Ni@Mg, Int. J. Hydrog. Energy 36 (22) (2011) 14484-14487.h ttp://dx.doi.org/10.1016/j.ijhydene.2011.08.024 [15] X.L. Ding, H.F. Ding, Y. Song, C.L. Xiang, Y.T. Li, Q.G. Zhang, Activity-tuning of supported Co-Ni nanocatalysts via composition and morphology for hydrogen storage in MgH2, Front Chem 7 (2019) 937.https://www.ncbi.nlm.nih.gov/pubmed/32047735/ [16] Q. Li, Y. Li, B. Liu, X.G. Lu, T.F. Zhang, Q.F. Gu, The cycling stability of the in situ formed Mg-based nanocomposite catalyzed by YH2, J. Mater. Chem. A 5 (33) (2017) 17532-17543. https://doi.org/10.1039/c7ta04551d. [17] Y. Wang, Z.M. Ding, X.J. Li, S.Q. Ren, S.H. Zhou, H.M. Zhang, Y. Li, S.M. Han, Improved hydrogen storage properties of MgH2 by nickel@nitrogen-doped carbon spheres, Dalton Trans. 49 (11) (2020) 3495-3502.https://doi.org/10.1039/d0dt00025f [18] Z.L. Ma, J.C. Liu, Y.F. Zhu, Y.Y. Zhao, H.J. Lin, Y. Zhang, H.W. Li, J.G. Zhang, Y.N. Liu, W.T. Gao, S.S. Li, L.Q. Li, Crystal-facet-dependent catalysis of anatase TiO2 on hydrogen storage of MgH2, J. Alloy. Compd. 822 (2020) 153553.http://dx.doi.org/10.1016/j.jallcom.2019.153553 [19] Q. Li, K.C. Chou, Q. Lin, L.J. Jiang, F. Zhan, Hydrogen absorption and desorption kinetics of Ag-Mg-Ni alloys, Int. J. Hydrog. Energy 29 (8) (2004) 843-849.http://dx.doi.org/10.1016/j.ijhydene.2003.10.002 [20] J.L. Bobet, E. Akiba, B. Darriet, Study of Mg-M (M=Co, Ni and Fe) mixture elaborated by reactive mechanical alloying:Hydrogen sorption properties, Int. J. Hydrog. Energy 26 (5) (2001) 493-501.http://dx.doi.org/10.1016/S0360-3199(00)00082-3 [21] D. Korablov, F. Besenbacher, T.R. Jensen, Kinetics and thermodynamics of hydrogenation-dehydrogenation for Mg-25%TM (TM=Ti, Nb or V) composites synthesized by reactive ball milling in hydrogen, Int. J. Hydrog. Energy 43 (34) (2018) 16804-16814. http://dx.doi.org/10.1016/j.ijhydene.2018.05.091. [22] R.A. Varin, S. Li, C. Chiu, L. Guo, O. Morozova, T. Khomenko, Z. Wronski, Nanocrystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg-X (X = Fe, Co, Mn, B) systems, J. Alloy. Compd. 404-406 (2005) 494-498.http://dx.doi.org/10.1016/j.jallcom.2004.12.176 [23] W. Su, Y.F. Zhu, J.G. Zhang, Y.N. Liu, Y. Yang, Q.F. Mao, L.Q. Li, Effect of multi-wall carbon nanotubes supported nano-nickel and TiF3 addition on hydrogen storage properties of magnesium hydride, J. Alloy. Compd. 669 (2016) 8-18.http://dx.doi.org/10.1016/j.jallcom.2016.01.253 [24] X. Zhang, Z.H. Leng, M.X. Gao, J.J. Hu, F. Du, J.H. Yao, H.G. Pan, Y.F. Liu, Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2, J. Power Sources 398 (2018) 183-192.http://dx.doi.org/10.1016/j.jpowsour.2018.07.072 [25] T.Z. Si, X.Y. Zhang, J.J. Feng, X.L. Ding, Y.T. Li, Enhancing hydrogen sorption in MgH2 by controlling particle size and contact of Ni catalysts, Rare Met. 40 (4) (2021) 995-1002. http://dx.doi.org/10.1007/s12598-018-1087-x. [26] M.S. Yahya, M. Ismail, Improvement of hydrogen storage properties of MgH2 catalyzed by K2NbF7 and multiwall carbon nanotube, J. Phys. Chem. C 122 (21) (2018) 11222-11233. https://doi.org/10.1021/acs.jpcc.8b02162. [27] L.T. Zhang, Z.L. Cai, Z.D. Yao, L. Ji, Z. Sun, N.H. Yan, B.Y. Zhang, B.B. Xiao, J. Du, X.Q. Zhu, L.X. Chen, A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2, J. Mater. Chem. A 7 (10) (2019) 5626-5634. https://doi.org/10.1039/c9ta00120d. [28] M. Ismail, N.S. Mustafa, N.A. Ali, N.A. Sazelee, M.S. Yahya, The hydrogen storage properties and catalytic mechanism of the CuFe2O4-doped MgH2 composite system, Int. J. Hydrog. Energy 44 (1) (2019) 318-324. http://dx.doi.org/10.1016/j.ijhydene.2018.04.191. [29] M.S. Yahya, M. Ismail, Catalytic effect of SrTiO3 on the hydrogen storage behaviour of MgH2, J. Energy Chem. 28 (2019) 46-53.http://dx.doi.org/10.1016/j.jechem.2017.10.020 [30] J. Cui, J.W. Liu, H. Wang, L.Z. Ouyang, D.L. Sun, M. Zhu, X.D. Yao, Mg-TM (TM:Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures:Synthesis, hydrogen storage performance and catalytic mechanism, J. Mater. Chem. A 2 (25) (2014) 9645-9655. https://doi.org/10.1039/c4ta00221k. [31] L.Z. Ouyang, X.S. Yang, M. Zhu, J.W. Liu, H.W. Dong, D.L. Sun, J. Zou, X.D. Yao, Enhanced hydrogen storage kinetics and stability by synergistic effects of in situ formed CeH2.73 and Ni in CeH2.73-MgH2-Ni nanocomposites, J. Phys. Chem. C 118 (15) (2014) 7808-7820. http://dx.doi.org/10.1021/jp500439n. [32] D. Pukazhselvan, N. Nasani, T. Yang, I. Bdikin, A.V. Kovalevsky, D.P. Fagg, Dehydrogenation properties of magnesium hydride loaded with Fe, Fe-C, and Fe-Mg additives, ChemPhysChem 18 (3) (2017) 287-291. https://doi.org/10.1002/cphc.201601078. [33] N. Hanada, T. Ichikawa, H. Fujii, Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage properties in magnesium hydride MgH2 prepared by mechanical milling, J. Phys. Chem. B 109 (15) (2005) 7188-7194. https://www.ncbi.nlm.nih.gov/pubmed/16851820/. [34] S.C. Gao, H.Z. Liu, L. Xu, S.Q. Li, X.H. Wang, M. Yan, Hydrogen storage properties of nano-CoB/CNTs catalyzed MgH2, J. Alloy. Compd. 735 (2018) 635-642.http://dx.doi.org/10.1016/j.jallcom.2017.11.047 [35] M.J. Liu, X.Z. Xiao, S.C. Zhao, M. Chen, J.F. Mao, B.S. Luo, L.X. Chen, Facile synthesis of Co/Pd supported by few-walled carbon nanotubes as an efficient bidirectional catalyst for improving the low temperature hydrogen storage properties of magnesium hydride, J. Mater. Chem. A 7 (10) (2019) 5277-5287. https://doi.org/10.1039/c8ta12431k. [36] C. Xu, H.J. Lin, J.C. Liu, P. Zhang, Y.Y. Meng, Y.N. Liu, J.G. Zhang, L.Q. Li, Y.F. Zhu, Improved hydrogen absorption/desorption properties of MgH2 by Co-catalyzing of YH2 and Co@C, ChemistrySelect 4 (26) (2019) 7709-7714. https://doi.org/10.1002/slct.201901475. [37] He Y, Wang L, Chen Z, Shen B, Wei J, Zeng P, Wen X, Catalytic ozonation for metoprolol and ibuprofen removal over different MnO2 nanocrystals:Efficiency, transformation and mechanism, Sci Total Environ 785 (2021) 147328.https://www.ncbi.nlm.nih.gov/pubmed/33940402/ [38] M. Zhang, X.Z. Xiao, X.W. Wang, M. Chen, Y.H. Lu, M.J. Liu, L.X. Chen, Excellent catalysis of TiO2 nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH2, Nanoscale 11 (15) (2019) 7465-7473. https://www.ncbi.nlm.nih.gov/pubmed/30942207/. [39] X.W. Wang, G.T. Fei, P. Tong, X.J. Xu, L.D. Zhang, Structural control and magnetic properties of electrodeposited Co nanowires, J. Cryst. Growth 300(2) (2007) 421-425. http://dx.doi.org/10.1016/j.jcrysgro.2006.12.039. [40] L.T. Zhang, L. Ji, Z.D. Yao, N.H. Yan, Z. Sun, X.L. Yang, X.Q. Zhu, S.L. Hu, L.X. Chen, Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2, Int. J. Hydrog. Energy 44 (39) (2019) 21955-21964. http://dx.doi.org/10.1016/j.ijhydene.2019.06.065. [41] X. Lu, L.T. Zhang, H.J. Yu, Z.Y. Lu, J.H. He, J.G. Zheng, F.Y. Wu, L.X. Chen, Achieving superior hydrogen storage properties of MgH2 by the effect of TiFe and carbon nanotubes, Chem. Eng. J. 422 (2021) 130101.http://dx.doi.org/10.1016/j.cej.2021.130101 [42] B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113 (18) (2000) 7756-7764. https://doi.org/10.1063/1.1316015. [43] B. Delley, DMol3 DFT studies:From molecules and molecular environments to surfaces and solids, Comput. Mater. Sci. 17 (2-4) (2000) 122-126. http://dx.doi.org/10.1016/S0927-0256(00)00008-2. [44] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (18) (1996) 3865.https://doi.org/10.1103/physrevlett.77.3865 [45] D.A. McKnight, J.P. Simmer, P.S. Hart, T.C. Hart, L.W. Fisher, Overlapping DSPP mutations cause dentin dysplasia and dentinogenesis imperfecta, J. Dent. Res. 87 (12) (2008) 1108-1111. https://doi.org/10.1177/154405910808701217. [46] P. Marfey, M. Ottesen, Determination ofd-amino acids. I. Hydrolysis of DNP-l-amino acid methyl esters with carboxypeptidase-Y, Carlsberg Res. Commun. 49 (6) (1984) 585-590. http://dx.doi.org/10.1007/BF02908687. [47] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (11) (1957) 1702-1706. https://doi.org/10.1021/ac60131a045. [48] N.A. Sazelee, N.H. Idris, M.F. Md Din, M. S Yahya, N.A. Ali, M. Ismail, LaFeO3 synthesised by solid-state method for enhanced sorption properties of MgH2, Results Phys. 16 (2020) 102844.http://dx.doi.org/10.1016/j.rinp.2019.102844 [49] Y. Cheng, J. Bi, W. Zhang, The hydrogen storage properties of MgH2-Fe7S8 composites, Mater. Adv. 2 (2) (2021) 736-742.https://doi.org/10.1039/d0ma00818d [50] M. Ismail, M.S. Yahya, N.A. Sazelee, N.A. Ali, F.A.H. Yap, N.S. Mustafa, The effect of K2SiF6 on the MgH2 hydrogen storage properties, J. Magnes. Alloy. 8 (3) (2020) 832-840. http://dx.doi.org/10.1016/j.jma.2020.04.002. [51] M. Zhang, X.Z. Xiao, Z.M. Hang, M. Chen, X.C. Wang, N. Zhang, L.X. Chen, Superior catalysis of NbN nanoparticles with intrinsic multiple valence on reversible hydrogen storage properties of magnesium hydride, Int. J. Hydrog. Energy 46 (1) (2021) 814-822. http://dx.doi.org/10.1016/j.ijhydene.2020.09.173. [52] T. Huang, X. Huang, C. Hu, J. Wang, H. Liu, Z. Ma, J. Zou, W. Ding, Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods, Mater. Today Energy 19 (2021) 100613.http://dx.doi.org/10.1016/j.mtener.2020.100613 [53] M.C. Weinberg, D.P. BirnieIII, V.A. ShneidmanIII, Crystallization kinetics and the JMAK equation, J. Non-Cryst. Solids 219 (1997) 89-99.http://dx.doi.org/10.1016/S0022-3093(97)00261-5 [54] M. Castro, F. Domınguez-Adame, A. Sánchez, T. Rodrıguez, Model for crystallization kinetics:Deviations from Kolmogorov-Johnson-Mehl-Avrami kinetics, Appl. Phys. Lett. 75 (15) (1999) 2205-2207. https://doi.org/10.1063/1.124965. [55] F. Jensen, Activation energies and the Arrhenius equation, Qual. Reliab. Engng. Int. 1 (1) (1985) 13-17.https://doi.org/10.1002/qre.4680010104 [56] M.J. Liu, X.Z. Xiao, S.C. Zhao, S. Saremi-Yarahmadi, M. Chen, J.G. Zheng, S.Q. Li, L.X. Chen, ZIF-67 derived Co@CNTs nanoparticles:Remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism, Int. J. Hydrog. Energy 44 (2) (2019) 1059-1069. http://dx.doi.org/10.1016/j.ijhydene.2018.11.078. [57] J. Huot, G. Liang, S. Boily, A. van Neste, R. Schulz, Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride, J. Alloy. Compd. 293-295 (1999) 495-500.http://dx.doi.org/10.1016/S0925-8388(99)00474-0 [58] X.S. Liu, H.Z. Liu, N. Qiu, Y.B. Zhang, G.Y. Zhao, L. Xu, Z.Q. Lan, J. Guo, Cycling hydrogen desorption properties and microstructures of MgH2-AlH3-NbF5 hydrogen storage materials, Rare Met. 40 (4) (2021) 1003-1007. http://dx.doi.org/10.1007/s12598-020-01425-1. |
[1] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[2] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[3] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[4] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[5] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[6] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[7] | Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134. |
[8] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[9] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[10] | Xuanyi Jia, Xiaomin Hu, Qiao Wang, Baiquan Chen, Xingyue Xie, Lihong Huang. Auto-thermal reforming of acetic acid for hydrogen production by ZnxNiyCrOm±δ catalysts: Effect of Cr promoted Ni-Zn intermetallic compound [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 216-221. |
[11] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
[12] | Feng Guo, Haoran Sun, Yuxing Shi, Fengyu Zhou, Weilong Shi. CdS nanoparticles decorated hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for improved visible-light photocatalytic hydrogen production [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 266-274. |
[13] | Cuiting Yang, Bowen Wu, Zewei Liu, Guang Miao, Qibin Xia, Zhong Li, Michael J. Janik, Guoqing Li, Jing Xiao. Catalytic adsorptive desulfurization of mercaptan, sulfide and disulfide using bifunctional Ti-based adsorbent for ultra-clean oil [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 25-34. |
[14] | Jiankang Wang, Yajing Wang, Zhongping Yao, Zhaohua Jiang. Metal-organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 380-388. |
[15] | Wei-Qi Yan, Yi-An Zhu, Xing-Gui Zhou, Wei-Kang Yuan. Rational design of heterogeneous catalysts by breaking and rebuilding scaling relations [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 22-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||