Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 157-168.DOI: 10.1016/j.cjche.2021.08.024
Previous Articles Next Articles
Feng Guo1, Zhihao Chen2, Xiliu Huang2, Longwen Cao2, Xiaofang Cheng2, Weilong Shi3,4, Lizhuang Chen2
Received:
2021-02-17
Revised:
2021-08-05
Online:
2022-06-18
Published:
2022-04-28
Contact:
Weilong Shi,E-mail:shiwl@just.edu.cn;Lizhuang Chen,E-mail:clz1977@sina.com
Supported by:
Feng Guo1, Zhihao Chen2, Xiliu Huang2, Longwen Cao2, Xiaofang Cheng2, Weilong Shi3,4, Lizhuang Chen2
通讯作者:
Weilong Shi,E-mail:shiwl@just.edu.cn;Lizhuang Chen,E-mail:clz1977@sina.com
基金资助:
Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168.
Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis[J]. 中国化学工程学报, 2022, 44(4): 157-168.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.08.024
[1] Y.Z. Hong, C.S. Li, B.X. Yin, D. Li, Z.Y. Zhang, B.D. Mao, W.Q. Fan, W. Gu, W.D. Shi, Promoting visible-light-induced photocatalytic degradation of tetracycline by an efficient and stable beta-Bi2O3@g-C3N4 core/shell nanocomposite, Chem. Eng. J. 338 (2018) 137-146.http://dx.doi.org/10.1016/j.cej.2017.12.108 [2] J.Y. Chen, X.Y. Xiao, Y. Wang, M.L. Lu, X.Y. Zeng, Novel AgI/BiOBr/reduced graphene oxide Z-scheme photocatalytic system for efficient degradation of tetracycline, J. Alloy. Compd. 800 (2019) 88-98.http://dx.doi.org/10.1016/j.jallcom.2019.06.004 [3] F. Guo, W.L. Shi, M.Y. Li, Y. Shi, H.B. Wen, 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline, Sep. Purif. Technol. 210 (2019) 608-615.http://dx.doi.org/10.1016/j.seppur.2018.08.055 [4] Y. Yang, Z.T. Zeng, C. Zhang, D.L. Huang, G.M. Zeng, R. Xiao, C. Lai, C.Y. Zhou, H. Guo, W.J. Xue, M. Cheng, W.J. Wang, J.J. Wang, Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation:Transformation pathways and mechanism insight, Chem. Eng. J. 349 (2018) 808-821.http://dx.doi.org/10.1016/j.cej.2018.05.093 [5] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, W.X. Hou, C. Wang, W.L. Shi, C.Y. Lu, Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation, Appl. Surf. Sci. 491 (2019) 88-94.http://dx.doi.org/10.1016/j.apsusc.2019.06.158 [6] Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo, Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light, Appl. Catal. B:Environ. 254 (2019) 541-550.http://dx.doi.org/10.1016/j.apcatb.2019.05.006 [7] C.Y. Lu, F. Guo, Q.Z. Yan, Z.J. Zhang, D. Li, L.P. Wang, Y.H. Zhou, Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light, J. Alloy. Compd. 811 (2019) 151976.http://dx.doi.org/10.1016/j.jallcom.2019.151976 [8] B. Ou, J.X. Wang, Y. Wu, S. Zhao, Z. Wang, Efficient removal of Cr (VI) by magnetic and recyclable calcined CoFe-LDH/g-C3N4 via the synergy of adsorption and photocatalysis under visible light, Chem. Eng. J. 380 (2020) 122600.http://dx.doi.org/10.1016/j.cej.2019.122600 [9] S.W. Gao, C.S. Guo, S. Hou, L. Wan, Q. Wang, J. Lv, Y. Zhang, J.F. Gao, W. Meng, J. Xu, Photocatalytic removal of tetrabromobisphenol A by magnetically separable flower-like BiOBr/BiOI/Fe3O4 hybrid nanocomposites under visible-light irradiation, J Hazard Mater 331 (2017) 1-12.https://www.ncbi.nlm.nih.gov/pubmed/28242523/ [10] W.L. Shi, M.Y. Li, H.J. Ren, F. Guo, X.L. Huang, Y. Shi, Y.B. Tang, Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity, Beilstein J Nanotechnol 10 (2019) 1360-1367.https://www.ncbi.nlm.nih.gov/pubmed/31355104/ [11] W.L. Shi, H.J. Ren, M.Y. Li, K.K. Shu, Y.S. Xu, C. Yan, Y.B. Tang, Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes, Chem. Eng. J. 382 (2020) 122876.http://dx.doi.org/10.1016/j.cej.2019.122876 [12] G.P. Zhang, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, J.M. Lu, Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity, Appl. Catal. B:Environ. 250 (2019) 313-324.http://dx.doi.org/10.1016/j.apcatb.2019.03.055 [13] J.J. Xue, C.J. Huang, Y.Q. Zong, J.D. Gu, M.X. Wang, S.S. Ma, Fe (III)-grafted Bi2MoO6 nanoplates for enhanced photocatalytic activities on tetracycline degradation and HMF oxidation, Appl. Organomet. Chem. 33 (11) (2019):5187-5197. DOI:10.1002/aoc.5187.https://doi.org/10.1002/aoc.5187 [14] J.F. Guo, C.S. Yang, Z.X. Sun, Z. Yang, L.P. Wang, C.Y. Lu, Z.Y. Ma, F. Guo, Ternary Fe3O4/MoS2/BiVO4 nanocomposites:novel magnetically separable visible light-driven photocatalyst for efficiently degradation of antibiotic wastewater through p-n heterojunction, J. Mater. Sci.:Mater. Electron. 31 (19) (2020) 16746-16758.http://dx.doi.org/10.1007/s10854-020-04230-9 [15] S.H. Wang, L. Zhao, W. Huang, H. Zhao, J.Y. Chen, Q. Cai, X. Jiang, C.Y. Lu, W.L. Shi, Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline, Mater. Res. Bull. 135 (2021) 111161.http://dx.doi.org/10.1016/j.materresbull.2020.111161 [16] Y.N. Liu, C. Liu, C.L. Shi, W. Sun, X. Lin, W.L. Shi, Y.Z. Hong, Carbon-based quantum dots (QDs) modified ms/tz-BiVO4 heterojunction with enhanced photocatalytic performance for water purification, J. Alloy. Compd. 881 (2021) 160437.http://dx.doi.org/10.1016/j.jallcom.2021.160437 [17] W. Sun, S. Yang, Y.N. Liu, C.L. Shi, W.L. Shi, X. Lin, F. Guo, Y.Z. Hong, Fabricating nitrogen-doped carbon dots (NCDs) on Bi3.64Mo0.36O6.55 nanospheres:a nanoheterostructure for enhanced photocatalytic performance for water purification, J. Phys. Chem. Solids 159 (2021) 110283.http://dx.doi.org/10.1016/j.jpcs.2021.110283 [18] R. Tao, C.L. Shao, X.H. Li, X.W. Li, S. Liu, S. Yang, C.C. Zhao, Y.C. Liu, Bi2MoO6/BiFeO3 heterojunction nanofibers:Enhanced photocatalytic activity, charge separation mechanism and magnetic separability, J Colloid Interface Sci 529 (2018) 404-414.https://www.ncbi.nlm.nih.gov/pubmed/29940323/ [19] X.C. Meng, Z.S. Zhang, Pd-doped Bi2MoO6 plasmonic photocatalysts with enhanced visible light photocatalytic performance, Appl. Surf. Sci. 392 (2017) 169-180.http://dx.doi.org/10.1016/j.apsusc.2016.08.113 [20] X.B. Zhang, L. Zhang, J.S. Hu, X.H. Huang, Facile hydrothermal synthesis and improved photocatalytic activities of Zn2+ doped Bi2MoO6 nanosheets, RSC Adv. 6 (38) (2016) 32349-32357.https://doi.org/10.1039/c6ra06972j [21] Z.L. Wang, Y. Huo, J.F. Zhang, C. Lu, K. Dai, C.H. Liang, G.P. Zhu, Facile preparation of two-dimensional Bi2MoO6@Ag2MoO4 core-shell composite with enhanced visible light photocatalytic activity, J. Alloy. Compd. 729 (2017) 100-108.http://dx.doi.org/10.1016/j.jallcom.2017.09.152 [22] Chen Y, Yang W, Gao S, Zhu L, Sun C, Li Q, Internal polarization modulation in Bi2 MoO6 for photocatalytic performance enhancement under visible-light illumination, ChemSusChem 11 (9) (2018) 1521-1532.https://www.ncbi.nlm.nih.gov/pubmed/29508555/ [23] X.Y. Chen, X.L. Xue, X.W. Gong, A novel Z-scheme porous g-C3N4 nanosheet/Ag3PO4 photocatalyst decorated with N-doped CDs for high efficiency removal of antibiotics, Dalton Trans 49 (16) (2020) 5205-5218.https://www.ncbi.nlm.nih.gov/pubmed/32236268/ [24] H.C. Zhao, J.J. Zhang, H. Zheng, Facile preparation of dual Z-scheme Bi2O3/g-C3N4/Ag6Si2O7 photocatalyst for highly efficient visible-light photocatalytic degradation of organic pollutants, Appl. Surf. Sci. 527 (2020) 146901.http://dx.doi.org/10.1016/j.apsusc.2020.146901 [25] S. Ali, M. Humayun, W.B. Pi, Y. Yuan, M. Wang, A. Khan, P. Yue, L. Shu, Z.P. Zheng, Q.Y. Fu, W. Luo, Fabrication of BiFeO3-g-C3N4-WO3 Z-scheme heterojunction as highly efficient visible-light photocatalyst for water reduction and 2, 4-dichlorophenol degradation:Insight mechanism, J. Hazard. Mater. 397 (2020) 122708.http://dx.doi.org/10.1016/j.jhazmat.2020.122708 [26] G.L. Di, Z.L. Zhu, H. Zhang, Y.L. Qiu, D.Q. Yin, J. Crittenden, Simultaneous sulfamethazine oxidation and bromate reduction by Pd-mediated Z-scheme Bi2MoO6/g-C3N4 photocatalysts:Synergetic mechanism and degradative pathway, Chem. Eng. J. 401 (2020) 126061.http://dx.doi.org/10.1016/j.cej.2020.126061 [27] D. Ma, J. Wu, M.C. Gao, Y.J. Xin, C. Chai, Enhanced debromination and degradation of 2, 4-dibromophenol by an Z-scheme Bi2MoO6/CNTs/g-C3N4 visible light photocatalyst, Chem. Eng. J. 316 (2017) 461-470.http://dx.doi.org/10.1016/j.cej.2017.01.124 [28] Y.H. Wu, M.T. Song, Z.L. Chai, X.J. Wang, Assembling Bi2MoO6/Ru/g-C3N4 for highly effective oxygen generation from water splitting under visible-light irradiation, Inorg Chem 58 (11) (2019) 7374-7384.https://www.ncbi.nlm.nih.gov/pubmed/31082221/ [29] T.J. Ma, J. Wu, Y.D. Mi, Q.H. Chen, D. Ma, C. Chai, Novel Z-Scheme g-C3N4/C@Bi2MoO6 composite with enhanced visible-light photocatalytic activity for β-naphthol degradation, Sep. Purif. Technol. 183 (2017) 54-65.http://dx.doi.org/10.1016/j.seppur.2017.04.005 [30] T.P. Yu, Y.Y. Si, Z. Lv, K.H. Wang, Q. Zhang, X. Liu, G.X. Wang, G.W. Xie, L.H. Jiang, Cd0.5Zn0.5S/Ni2P noble-metal-free photocatalyst for high-efficient photocatalytic hydrogen production:Ni2P boosting separation of photocarriers, Int. J. Hydrog. Energy 44 (60) (2019) 31832-31840.http://dx.doi.org/10.1016/j.ijhydene.2019.10.126 [31] T.P. Hu, K. Dai, J.F. Zhang, S.F. Chen, Noble-metal-free Ni2P modified step-scheme SnNb2O6/CdS-diethylenetriamine for photocatalytic hydrogen production under broadband light irradiation, Appl. Catal. B:Environ. 269 (2020) 118844.http://dx.doi.org/10.1016/j.apcatb.2020.118844 [32] Z.J. Sun, H.F. Zheng, J.S. Li, P.W. Du, Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts, Energy Environ. Sci. 8 (9) (2015) 2668-2676.https://doi.org/10.1039/c5ee01310k [33] H. Zhao, S.N. Sun, P.P. Jiang, Z.J. Xu, Graphitic C3N4 modified by Ni2P cocatalyst:an efficient, robust and low cost photocatalyst for visible-light-driven H2 evolution from water, Chem. Eng. J. 315 (2017) 296-303.http://dx.doi.org/10.1016/j.cej.2017.01.034 [34] X.C. Meng, Z.S. Zhang, Bi2MoO6 co-modified by reduced graphene oxide and palladium (Pd2+ and Pd0) with enhanced photocatalytic decomposition of phenol, Appl. Catal. B:Environ. 209 (2017) 383-393.http://dx.doi.org/10.1016/j.apcatb.2017.01.033 [35] X.L. Wu, Y.H. Ng, X.M. Wen, H.Y. Chung, R.J. Wong, Y. Du, S.X. Dou, R. Amal, J. Scott, Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution, Chem. Eng. J. 353 (2018) 636-644.http://dx.doi.org/10.1016/j.cej.2018.07.149 [36] W. Liu, J. Zhou, Y. Zhou, D. Liu, Peroxymonosulfate-assisted g-C3N4@Bi2MoO6 photocatalytic system for degradation of nimesulide through phenyl ether bond cleavage under visible light irradiation. Sep. Purif. Technol. 264 (2021) 118288.http://dx.doi.org/10.1016/j.seppur.2019.115770 [37] X.J. Wang, X.L. Li, C. Liu, F.T. Li, Y.P. Li, J. Zhao, R.H. Liu, G.D. Li, Metalloid Ni2P and its behavior for boosting the photocatalytic hydrogen evolution of CaIn2S4, Int. J. Hydrog. Energy 43 (1) (2018) 219-228.http://dx.doi.org/10.1016/j.ijhydene.2017.11.042 [38] W.J. Luo, X.J. Chen, Z. Wei, D. Liu, W.Q. Yao, Y.F. Zhu, Three-dimensional network structure assembled by g-C3N4 nanorods for improving visible-light photocatalytic performance, Appl. Catal. B:Environ. 255 (2019) 117761.http://dx.doi.org/10.1016/j.apcatb.2019.117761 [39] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 228 (2019) 115770.http://dx.doi.org/10.1016/j.seppur.2019.115770 [40] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, C. Yan, F. Guo, Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light, Chem. Eng. J. 382 (2020) 122960.http://dx.doi.org/10.1016/j.cej.2019.122960 [41] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, X. Lin, A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen, Int. J. Hydrog. Energy 45 (55) (2020) 30521-30532.http://dx.doi.org/10.1016/j.ijhydene.2020.08.080 [42] W.Q. Zhang, W.L. Shi, H.R. Sun, Y.X. Shi, H. Luo, S.R. Jing, Y.Q. Fan, F. Guo, C.Y. Lu, Fabrication of ternary CoO/g-C3N4/Co3O4 nanocomposite with p-n-p type heterojunction for boosted visible-light photocatalytic performance, J. Chem. Technol. Biotechnol. 96 (7) (2021) 1854-1863.https://doi.org/10.1002/jctb.6703 [43] F. Guo, H. Sun, X. Huang, W. Shi, C. Yan, Fabrication of TiO2/high-crystalline g-C3N4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation, J. Chem. Technol. Biotechnol. 95 (2020) 2684-2693 [44] W. Wang, J.J. Fang, S.F. Shao, M. Lai, C.H. Lu, Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics, Appl. Catal. B:Environ. 217 (2017) 57-64.http://dx.doi.org/10.1016/j.apcatb.2017.05.037 [45] B. Luo, R. Song, J.F. Geng, X.H. Liu, D.W. Jing, M.L. Wang, C. Cheng, Towards the prominent cocatalytic effect of ultra-small CoP particles anchored on g-C3N4 nanosheets for visible light driven photocatalytic H2 production, Appl. Catal. B:Environ. 256 (2019) 117819.http://dx.doi.org/10.1016/j.apcatb.2019.117819 [46] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, High-efficiency photocatalytic water splitting by a N-doped porous g-C3N4 nanosheet polymer photocatalyst derived from urea and N, N-dimethylformamide, Inorg. Chem. Front. 7 (8) (2020) 1770-1779.https://doi.org/10.1039/d0qi00117a [47] W.L. Shi, J.B. Wang, S. Yang, X. Lin, F. Guo, J.Y. Shi, Fabrication of a ternary carbon dots/CoO/g-C3N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production, J. Chem. Technol. Biotechnol. 95 (8) (2020) 2129-2138.https://doi.org/10.1002/jctb.6398 [48] W.L. Shi, K.K. Shu, H.R. Sun, H.J. Ren, M.Y. Li, F.Y. Chen, F. Guo, Dual enhancement of capturing photogenerated electrons by loading CoP nanoparticles on N-deficient graphitic carbon nitride for efficient photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 246 (2020) 116930.http://dx.doi.org/10.1016/j.seppur.2020.116930 [49] Y.K. Zhang, G.R. Wang, Z.L. Jin, An orderly assembled g-C3N4, rGO and Ni2P photocatalyst for efficient hydrogen evolution, Int. J. Hydrog. Energy 44 (21) (2019) 10316-10327.http://dx.doi.org/10.1016/j.ijhydene.2019.03.006 [50] S. Yang, C. Liu, J.B. Wang, X. Lin, Y.Z. Hong, F. Guo, J.Y. Shi, Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites, J. Solid State Chem. 287 (2020) 121347.http://dx.doi.org/10.1016/j.jssc.2020.121347 [51] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, L.Z. Chen, Prominent co-catalytic effect of CoP nanoparticles anchored on high-crystalline g-C3N4 nanosheets for enhanced visible-light photocatalytic degradation of tetracycline in wastewater, Chem. Eng. J. 395 (2020) 125118.http://dx.doi.org/10.1016/j.cej.2020.125118 [52] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56 (3) (2021) 2226-2240.http://dx.doi.org/10.1007/s10853-020-05436-2 [53] X.F. Zhu, F. Guo, J.J. Pan, H.R. Sun, L.L. Gao, J.X. Deng, X.Y. Zhu, W.L. Shi, Fabrication of visible-light-response face-contact ZnSnO3@g-C3N4 core-shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight, J. Mater. Sci. 56 (6) (2021) 4366-4379.http://dx.doi.org/10.1007/s10853-020-05542-1 [54] J.W. Shi, Y.J. Zou, L.H. Cheng, D.D. Ma, D.K. Sun, S.M. Mao, L. Sun, C. He, Z.Y. Wang, In-situ phosphating to synthesize Ni2P decorated NiO/g-C3N4 p-n junction for enhanced photocatalytic hydrogen production, Chem. Eng. J. 378 (2019) 122161.http://dx.doi.org/10.1016/j.cej.2019.122161 [55] N. Li, H. Gao, X. Wang, S.J. Zhao, D. Lv, G.Q. Yang, X.Y. Gao, H.K. Fan, Y.Q. Gao, L. Ge, Novel indirect Z-scheme g-C3N4/Bi2MoO6/Bi hollow microsphere heterojunctions with SPR-promoted visible absorption and highly enhanced photocatalytic performance, Chin. J. Catal. 41 (3) (2020) 426-434.http://dx.doi.org/10.1016/S1872-2067(19)63478-9 [56] S.J. Li, C.C. Wang, M.J. Cai, F. Yang, Y.P. Liu, J.L. Chen, P. Zhang, X. Li, X.B. Chen, Facile fabrication of TaON/Bi2MoO6 core-shell S-scheme heterojunction nanofibers for boosting visible-light catalytic levofloxacin degradation and Cr(VI) reduction, Chem. Eng. J. 428 (2022) 131158.http://dx.doi.org/10.1016/j.cej.2021.131158 [57] H. Najafian, F. Manteghi, F. Beshkar, M. Salavati-Niasari, Fabrication of nanocomposite photocatalyst CuBi2O4/Bi3ClO4 for removal of acid brown 14 as water pollutant under visible light irradiation, J Hazard Mater 361 (2019) 210-220.https://www.ncbi.nlm.nih.gov/pubmed/30196033/ [58] Z. Wang, Z. Qi, X. Fan, D. Leung, J. Long, Z. Zhang, T. Miao, S. Meng, S. Chen, X. Fu, Intimately Contacted Ni2P on CdS Nanorods for Highly Efficient Photocatalytic H2 Evolution:New Phosphidation Route and the Interfacial Separation Mechanism of Charge Carriers. Appl. Catal. B:Environ. 281 (2021) 119443.http://dx.doi.org/10.1016/j.apcatb.2018.04.013http://dx.doi.org/10.1016/j.ijhydene.2019.03.006 [59] Y.B. Chen, Z.X. Qin, General applicability of nanocrystalline Ni2P as a noble-metal-free cocatalyst to boost photocatalytic hydrogen generation, Catal. Sci. Technol. 6 (23) (2016) 8212-8221.https://doi.org/10.1039/c6cy01653g [60] E.L. Liu, X. Lin, Y.Z. Hong, L. Yang, B.F. Luo, W.L. Shi, J.Y. Shi, Rational copolymerization strategy engineered C self-doped g-C3N4 for efficient and robust solar photocatalytic H2 evolution, Renew. Energy 178 (2021) 757-765.http://dx.doi.org/10.1016/j.renene.2021.06.066 [61] X. Chen, X.C. Ke, J.F. Zhang, C.C. Yang, K. Dai, C.H. Liang, Insight into the synergy of amine-modified S-scheme Cd0.5Zn0.5Se/porous g-C3N4 and noble-metal-free Ni2P for boosting photocatalytic hydrogen generation, Ceram. Int. 47 (10) (2021) 13488-13499.http://dx.doi.org/10.1016/j.ceramint.2021.01.207 [62] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, F. Guo, Y.B. Tang, C.Y. Lu, Construction of CuBi2O4/Bi2MoO6 p-n heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation, Chem. Eng. J. 394 (2020) 125009.http://dx.doi.org/10.1016/j.cej.2020.125009 [63] H.B. Yu, D.Y. Wang, B. Zhao, Y. Lu, X.H. Wang, S.Y. Zhu, W.C. Qin, M.X. Huo, Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction, Sep. Purif. Technol. 237 (2020) 116365.http://dx.doi.org/10.1016/j.seppur.2019.116365 [64] F. Guo, X.L. Huang, Z.H. Chen, H.J. Ren, M.Y. Li, L.Z. Chen, MoS2 nanosheets anchored on porous ZnSnO3 cubes as an efficient visible-light-driven composite photocatalyst for the degradation of tetracycline and mechanism insight, J. Hazard. Mater. 390 (2020) 122158.https://doi.org/10.1016/j.jhazmat.2020.122158 [65] D.S. Dai, L. Wang, N. Xiao, S.S. Li, H. Xu, S. Liu, B.R. Xu, D. Lv, Y.Q. Gao, W.Y. Song, L. Ge, J. Liu, In-situ synthesis of Ni2P co-catalyst decorated Zn0.5Cd0.5S nanorods for high-quantum-yield photocatalytic hydrogen production under visible light irradiation, Appl. Catal. B:Environ. 233 (2018) 194-201.http://dx.doi.org/10.1016/j.apcatb.2018.04.013 [66] W.L. Shi, H.J. Ren, X.L. Huang, M.Y. Li, Y.B. Tang, F. Guo, Low cost red mud modified graphitic carbon nitride for the removal of organic pollutants in wastewater by the synergistic effect of adsorption and photocatalysis, Sep. Purif. Technol. 237 (2020) 116477.http://dx.doi.org/10.1016/j.seppur.2019.116477 [67] F. Chen, Q. Yang, Y.L. Wang, J.W. Zhao, D.B. Wang, X.M. Li, Z. Guo, H. Wang, Y.C. Deng, C.G. Niu, G.M. Zeng, Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant, Appl. Catal. B:Environ. 205 (2017) 133-147.http://dx.doi.org/10.1016/j.apcatb.2016.12.017 [68] M.H. Chen, C.C. Chen, R.J. Wu, C.S. Lu, Heterogeneous photocatalytic degradation of disulfoton in aqueous TiO2 suspensions:parameter and reaction pathway investigations, J. Chin. Chem. Soc. 60 (4) (2013) 380-390.https://doi.org/10.1002/jccs.201200027 [69] W.L. Shi, K.K. Shu, X.L. Huang, H.J. Ren, M.Y. Li, F.Y. Chen, F. Guo, Enhancement of visible-light photocatalytic degradation performance over nitrogen-deficient g-C3N4/KNbO3 heterojunction photocatalyst, J. Chem. Technol. Biotechnol. 95 (5) (2020) 1476-1486.https://doi.org/10.1002/jctb.6338 [70] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406 (2021) 126844.http://dx.doi.org/10.1016/j.cej.2020.126844 [71] F. Guo, X.L. Huang, Z.H. Chen, L.W. Cao, X.F. Cheng, L.Z. Chen, W.L. Shi, Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics, Sep. Purif. Technol. 265 (2021) 118477.http://dx.doi.org/10.1016/j.seppur.2021.118477 [72] J. Lee, D.A. Tryk, A. Fujishima, S.M. Park, Electrochemical generation of ferrate in acidic media at boron-doped diamond electrodes, Chem Commun (Camb) (5) (2002) 486-487.https://www.ncbi.nlm.nih.gov/pubmed/12120553/ [73] F. Guo, X.L. Huang, Z.H. Chen, Y.X. Shi, H.R. Sun, X.F. Cheng, W.L. Shi, L.Z. Chen, Formation of unique hollow ZnSnO3@ZnIn2S4 core-shell heterojunction to boost visible-light-driven photocatalytic water splitting for hydrogen production, J Colloid Interface Sci 602 (2021) 889-897.https://www.ncbi.nlm.nih.gov/pubmed/34214733/ [74] F. Guo, Z.H. Chen, X.L. Huang, L.W. Cao, X.F. Cheng, W.L. Shi, L.Z. Chen, Cu3P nanoparticles decorated hollow tubular carbon nitride as a superior photocatalyst for photodegradation of tetracycline under visible light, Sep. Purif. Technol. 275 (2021) 119223.http://dx.doi.org/10.1016/j.seppur.2021.119223 [75] D. Ma, J. Wu, M.C. Gao, Y.J. Xin, Y.Y. Sun, T.J. Ma, Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator, Chem. Eng. J. 313 (2017) 1567-1576.http://dx.doi.org/10.1016/j.cej.2016.11.036 [76] J.Q. Pan, W. Ou, S. Li, Y.P. Chen, H.L. Li, Y.Y. Liu, J.J. Wang, C.S. Song, Y.Y. Zheng, C.R. Li, Photocatalytic hydrogen production enhancement of Z-Scheme CdS quantum dots/Ni2P/Black Ti3+-TiO2 nanotubes with dual-functional Ni2P nanosheets, Int. J. Hydrog. Energy 45 (58) (2020) 33478-33490.http://dx.doi.org/10.1016/j.ijhydene.2020.09.084 [77] H.F. Li, H.T. Yu, X. Quan, S. Chen, Y.B. Zhang, Uncovering the key role of the fermi level of the electron mediator in a Z-scheme photocatalyst by detecting the charge transfer process of WO3-metal-gC3N4 (metal=Cu, Ag, Au), ACS Appl Mater Interfaces 8 (3) (2016) 2111-2119.https://www.ncbi.nlm.nih.gov/pubmed/26728189/ [78] S.S. Jin, H.S. Hao, Y.J. Gan, W.H. Guo, H. Li, X.F. Hu, H.M. Hou, G.L. Zhang, S. Yan, W.Y. Gao, G.S. Liu, Preparation and improved photocatalytic activities of Ho3+/Yb3+ co-doped Bi2MoO6, Mater. Chem. Phys. 199 (2017) 107-112.http://dx.doi.org/10.1016/j.matchemphys.2017.06.053 [79] T.P. He, Y.H. Wu, C.Y. Jiang, Z.F. Chen, Y.H. Wang, G.Q. Liu, Z.G. Xu, G. Ning, X.Y. Chen, Y.L. Zhao, Novel magnetic Fe3O4/g-C3N4/MoO3 nanocomposites with highly enhanced photocatalytic activities:Visible-light-driven degradation of tetracycline from aqueous environment, PLoS One 15 (8) (2020) e0237389. DOI:10.1371/journal.pone.0237389.https://www.ncbi.nlm.nih.gov/pubmed/32797116/ [80] M.H. Cao, P.F. Wang, Y.H. Ao, C. Wang, J. Hou, J. Qian, Visible light activated photocatalytic degradation of tetracycline by a magnetically separable composite photocatalyst:Graphene oxide/magnetite/cerium-doped titania, J Colloid Interface Sci 467 (2016) 129-139.https://www.ncbi.nlm.nih.gov/pubmed/26799623/ [81] J.F. Niu, S.Y. Ding, L.W. Zhang, J.B. Zhao, C.H. Feng, Visible-light-mediated Sr-Bi2O3 photocatalysis of tetracycline:kinetics, mechanisms and toxicity assessment, Chemosphere 93 (1) (2013) 1-8.https://www.ncbi.nlm.nih.gov/pubmed/23706401/ [82] X.L. Liu, P. Lv, G.X. Yao, C.C. Ma, P.W. Huo, Y.S. Yan, Microwave-assisted synthesis of selective degradation photocatalyst by surface molecular imprinting method for the degradation of tetracycline onto ClTiO2, Chem. Eng. J. 217 (2013) 398-406.http://dx.doi.org/10.1016/j.cej.2012.12.007 [83] X.J. Wen, C.H. Shen, Z.H. Fei, C.G. Niu, Q. Lu, J. Guo, H.M. Lu, Fabrication of a zinc tungstate-based a p-n heterojunction photocatalysts towards refractory pollutants degradation under visible light irradiation, Colloids Surfaces A:Physicochem. Eng. Aspects 573 (2019) 137-145.http://dx.doi.org/10.1016/j.colsurfa.2019.04.026 [84] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes:Mechanism and degradation pathway, Sep. Purif. Technol. 253 (2020) 117518.http://dx.doi.org/10.1016/j.seppur.2020.117518 |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[4] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[5] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[6] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[7] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[8] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[9] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[10] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[11] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[12] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[13] | Hany M. Abd El-Lateef, Mai M. Khalaf, K. Shalabi, Antar A. Abdelhamid. Multicomponent synthesis and designing of tetrasubstituted imidazole compounds catalyzed via ionic-liquid for acid steel corrosion protection: Experimental exploration and theoretical calculations [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 304-319. |
[14] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10. |
[15] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||