Chinese Journal of Chemical Engineering ›› 2022, Vol. 44 ›› Issue (4): 169-181.DOI: 10.1016/j.cjche.2021.06.019
Previous Articles Next Articles
Yanan Wei1, Yunlei Zhang1, Bing Li1, Wen Guan1, Changhao Yan2, Xin Li1, Yongsheng Yan1
Received:
2020-09-12
Revised:
2021-06-17
Online:
2022-06-18
Published:
2022-04-28
Contact:
Yunlei Zhang,E-mail:jsdxzyl@ujs.edu.cn;Yongsheng Yan,E-mail:yys@ujs.edu.cn
Supported by:
Yanan Wei1, Yunlei Zhang1, Bing Li1, Wen Guan1, Changhao Yan2, Xin Li1, Yongsheng Yan1
通讯作者:
Yunlei Zhang,E-mail:jsdxzyl@ujs.edu.cn;Yongsheng Yan,E-mail:yys@ujs.edu.cn
基金资助:
Yanan Wei, Yunlei Zhang, Bing Li, Wen Guan, Changhao Yan, Xin Li, Yongsheng Yan. Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural[J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 169-181.
Yanan Wei, Yunlei Zhang, Bing Li, Wen Guan, Changhao Yan, Xin Li, Yongsheng Yan. Facile synthesis of metal-organic frameworks embedded in interconnected macroporous polymer as a dual acid-base bifunctional catalyst for efficient conversion of cellulose to 5-hydroxymethylfurfural[J]. 中国化学工程学报, 2022, 44(4): 169-181.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.06.019
[1] I. Jiménez, A. Teckchandani, J. Santamaría, P. Maireles, A. Jiménez, Selective dehydration of glucose to 5-hydroxymethylfurfural on acidic mesoporous tantalum phosphate, Appl. Catal. B-Environ., 144 (2014)22-28 [2] D Song, Q Zhang, Y Sun, P Zhang, Y Guo, J Hu, Design of ordered mesoporous sulfonic acid functionalized ZrO2/organosilica bifunctional catalysts for direct catalytic conversion of glucose to ethyl levulinate, ChemCatChem, 10 (21) (2018)4953-4965 [3] Z. Zhang, G. Huber, Catalytic oxidation of carbohydrates into organic acids and furan chemicals, Chem. Soc. Rev., 47 (4) (2018)1351-1390 [4] Z. Zhang, K. Deng, Recent advances in the catalytic synthesis of 2,5-furandicarboxylic acid and its derivatives, ACS Catal., 5 (11) (2015)6529-6544 [5] J. Li, J. Liu, H. Liu, G. Xu, J. Zhang, J. Liu, G. Zhou, Q. Li, Z. Xu, Y. Fu, Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over heterogeneous iron catalysts, ChemSusChem, 10 (7) (2017)1436-1447 [6] Y. Wei, Y. Zhang, B. Li, C. Yan, Z. Da, M. Meng, C. Liu, Y. Yan, Fabrication of graphene oxide supported acid-base bifunctional metal-organic frameworks as efficient catalyst for glucose to 5-hydroxymethylfurfural conversion, Energy Techonl. Ger., 8 (3) (2020)1901111 [7] S. Dutta, J. Kim, Y. Ide, J. Kim, M. Hossain, Y. Bando, Y. Yamauchi, K. Wu, 3D network of cellulose-based energy storage devices and related emerging applications, Mater. Horiz., 4 (4) (2017)522-545 [8] J. He, M. Liu, K. Huang, T. Walker, C. Maravelias, J. Dumesic, G. Huber, Production of levoglucosenone and 5-hydroxymethlfurfural from cellulose in polar aprotic solvent-water mixtures, Green Chem., 19 (15) (2017)3642-3653 [9] S. Dutta, S. De, M. Alam, M. Omar-Abu, B. Saha, Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts, J. Catal., 288 (2012)8-15 [10] E. Sezgin, M. Keçeci Esen, S. Akmaz, S. Koc, Heterogeneous Cr-zeolites (USY and Beta) for the conversion of glucose and cellulose to 5-hydroxymethylfurfural (HMF), Cellulose, 26 (2019)9035-9043 [11] W. Peng, Y. Lee, C. Wu, C. W. Wu, Acid-base bi-functionalized, large-pored mesoporous silica nanoparticles for cooperative catalysis of one-pot cellulose-to-HMF conversion, J. Mater. Chem., 22 (43) (2012)23181-23185 [12] L. Zhou, R. Liang, Z. Ma, T. Wu, Y. Wu, Conversion of cellulose to HMF in ionic liquid catalyzed by bifunctional ionic liquids, Bioresource Technol.,129 (2013)450-455 [13] Y. Shen, Y. Zhang, Y. Chen, Y. Yan, J. Pan, M. Liu, W. Shi, Combination of Brønsted and Lewis polymeric catalysts for efficient conversion of cellulose into 5-hydroxymethylfurfural (HMF) in ionic liquids, Energy Techonl. Ger., 4 (5) (2016)600-609 [14] X. Li, K. Peng, Q. Xia, X. Liu, Y. Wang, Efficient conversion of cellulose into 5-hyfroxymethylfural over niobia/carbon composites, Chem. Eng. J., 332 (15) (2018)528-536 [15] Z. Wen, L. Yu, F. Mai, H. Chen, Y Li, Catalytic conversion of microcrystalline cellulose to glucose and 5-hydroxymethylfurfural over a niobic acid catalyst, Ind. Eng. Chem. Res., 58 (38) (2019)17675-17681 [16] Y. Zhang, J. Pan, M. Gan, H. Ou, Y Yan, W. Shi, L Yu, Acid-chromic chloride functionalized natural clay-particles for enhanced conversion of one-pot cellulose to 5-hydroxymethylfurfural in ionic liquids, RSC Adv., 4 (23) (2014)11664 [17] S. Chen, I. Yu, D. Cho, H. Song, D. Tsang, J. Tessonnier, Y. Ok, C. Poon, Selective glucose isomerization to fructose via a nitrogen-doped solid base catalyst derived from spent coffee grounds, ACS Sustainable Chem. Eng., 6 (12) (2018)16113-16120 [18] M. Cao, S. Sun, C. Long, J. Luo, H. Zou, D. Wu, New bi-functionalized ordered mesoporous material as heterogeneous catalyst for production of 5-hydroxymethylfurfural, Micropor. Mesopor. Mat., 312 (2021)110709 [19] B. Velage, N. Peela, Seed-assisted and OSDA-free synthesis of H-mordenite zeolites for efficient production of 5-hydroxymethylfurfural from glucose, Micropor. Mesopor. Mat., 279 (2019)211-219 [20] Y. Feng, M. Zuo, T. Wang, W. Jia, X. Zhao, X. Zeng, Y. Sun, X. Tang, T. Lei, L. Lin, Efficient synthesis of glucose into 5-hydroxymethylfurfural with SO42-/ZrO2 modified H+ zeolites in different solvent systems, J. Taiwan Inst. Chem. E., 96 (2019)431-438 [21] Y. Zhang, Y. Chen, Y. Shen, Y. Yan, J. Pan, W. Shi, L. Yu, Hierarchically macro-/mesoporous polymer foam as an enhanced and recyclable catalyst system for the sustainable synthesis of 5-hydroxymethylfurfural from renewable carbohydrates, ChemPlusChem, 81 (1) (2016)108-118 [22] S. Zhang, J. Chen, V. Perchyonok, Stability of high internal phase emulsions with sole cationic surfactant and its tailoring morphology of porous polymers based on the emulsions, Polymer, 50 (7) (2009)1723-1731 [23] A. Barbetta, N. Cameron, Morphology and surface area of emulsion-derived (PolyHIPE) solid foams prepared with oil-phase soluble porogenic solvents:span 80 as surfactant, Macromolecules, 37 (9) (2004)3188-3201 [24] H. Zhu, M. Zhang, S. Zhang, Preparation of macroporpus polymers from microcapsule-stabilized Pickering high internal phase emulsions, Langmuir, 35 (29) (2019)9504-9512 [25] A. Yadav, N. Erdal, M. Hakkarainen, B. Nandan, R. Srivastava, Cellulose-derived nanographene oxide reinforced macroporous scaffolds of high internal phase emulsion-templated cross-linked poly (ε-caprolactone), Biomacromolecules, 21 (2) (2020)589-596 [26] Y. Zhang, J. Pan, Y. Chen, W. Shi, Y. Yan, L. Yu, HIPE temple:Towards the synthesis of polymeric catalysts with adjustable porous structure, acid-base strength and wettability for biomass energy conversion, Chem. Eng. J., 283 (2016)956-970 [27] T. Lu, Y. Zhu, Y. Qi, Y. Kang, A. Wan, Tunable superporous magnetic adsorbent prepared via eco-friendly Pickering MIPEs for high-efficiency adsorption of Rb+ and Sr2+, Chem. Eng. J., 368 (2019)988-998 [28] L. Wong, S. Barg, A. Menner, P. Pereira Vale do, G. Eda, M. Chowalla, E. Saiz, A. Bismarck, Macroporous polymer nanocomposites synthesised from high internal phase emulsion templates stabilised by reduced graphene oxide, Polymer, 55 (2014)395-402 [29] A. Menner, V. Ikem, M. Salgueiro, M. Shaffer, A. Bismarck, High internal phase emulsion templates solely stabilised by functionalised titania nanoparticles, Chem. Commun., 41 (41) (2007)4274 [30] B. Zhang, J. Zhang, C. Liu, L. Peng, X. Sang, B. Han, X. Ma, T. Lou, X. Tan, G. Yang, High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels, Sci. Rep., 6 (2016)21401 [31] Y. Liao, N. Chi, N. Ishiguro, A. Young, C. Tsung, C. W. Wu, Engineering a homogeneous ally-oxide interface derived from metal-organic frameworks for selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid, Appl. Catal. B-Environ., 270 (2020)118805 [32] Y. Liao, B. M. Matsagar, K. Wu, Metal-organic framework (MOF)-derived effective solid catalysts for valorization of lignocellulosic biomass, ACS Sustainable Chem. Eng., 6 (11) (2018)13628-13643 [33] H. Konnerth, B. Matsagar, S. Chen, M. Prechtl, F. Shieh, K. Wu, Metal-organic framework (MOF)-derived catalysts for fine chemical production, Coordin. Chem. Rev., 416 (2018)213319 [34] C. Chueh, C. Chen, Y. Su, H. Konnerth, Y. Gu, C. Kung, K. Wu, Harnessing MOF materials in photovoltaic devices:recent advances, challenges, and perspectives, J. Mater. Chem. A, 7 (29) (2019)17079-17095 [35] A. Osatiashtiani, A. Lee, D. Brown, J. Melero, G. Morales, K. Wilson, Bifunctional SO4/ZrO2 catalysts for 5-hydroxymethylfufural (5-HMF) production from glucose, Catal. Sci. Technol., 4 (2) (2014)333-342 [36] J. Binder, R. Raines, Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals, J. Am. Chem. Soc., 131 (5) (2009)1979-1985 [37] S. Shinde, C. Rode, A two-phase system for the clean and high yield synthesis of furylmethane derivatives over -SO3H functionalized ionic liquids, Green Chem., 19 (20) (2017)4804-4810 [38] J. Olorunyomi, T. Liu, C. Ho, C. Li, K. Chan, Imparting UiO-66 with fast cation exchange property via sulfonating organic linkers for selective adsorption, Sep. Purif. Technol., 260 (2021)118219 [39] X. Shi, X. Zhang, F. Bi, Z. Zheng, L. Sheng, J. Xu, Z. Wang, Y. Yang, Effective toluene adsorption over defective UiO-66-NH2:An experimental and computational exploration, J. Mol. Liq., 316 (2020)113812 [40] C. Lee, C. Chen, Y. Liao, K. Wu, C. Chueh, Enhancing efficiency and stability of photovoltaic cell by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures, Adv. Sci., 6 (5) (2019)1801715 [41] X. Zhang, L. Song, F. Bi, D. Zhang, Y. Wang, L. Cui, Catalytic oxidation of toluene using a facile synthesized Ag nanoparticle supported on UiO-66 derivative, J. Colloid Interface Sci., 571 (2020)38-47 [42] X. Li, H. Jiang, C. Ma, Z. Zhu, X. Song, X. Li, H. Wang, P. Huo, X. Chen, Construction of a multi-interfacial-electron transfer scheme for efficient CO2 photoreduction:A case study using CdIn2S4 micro flower spheres modified with Au nanoparticles and reduced graphene oxide, J. Mater. Chem. A, 8 (36) (2020)18707 [43] X. Li, H. Jiang, C. Ma, Z. Zhu, X. Song, H. Wang, P. Huo, X. Li, Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO, Appl. Appl. Catal. B-Environ., 283 (2020)119638 [44] M. Ayiania, M. Smith, A. Hensley, L. Sxudiero, J. McEwen, M. Garcia-Perez, Deconvoluting the XPS spectra for nitrogen-doped chars:An analysis from fist principles, Carbon, 162 (2020)528-544 [45] B. Li, M. Meng, Y. Cui, Y. Wu, Y. Zhang, H. Dong, Z. Zhu, Y. Feng, C. Wu, Changing conventional blending photocatalytic membranes (BPMs):Focus on improving photocatalytic performance of Fe3O4/g-C3N4/PVDF membranes through magnetically induced freezing casting method, Chem. Eng. J., 365 (2019)405-414 [46] J. Maciel, M. Martins, M. Barbosa, The stability of self-assembled monolayers with time and under biological conditions, J. Biomed. Mater. Res. A, 94A (3) (2010)833-843 [47] J. Wang, W. Xu, J. Ren, X. Liu, G. Lu, Y. Wang, Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid, Green Chem., 13 (10) (2011)2678 [48] X. Zhang, D. Zhang, Z. Sun, L. Xue, X. Wang, Z. Jiang, Highly efficient preparation of HMF from cellulose using temperature-responsive heteropoly acid catalysts in cascade reaction. Appl. Catal. B-Environ., 196 (2016)50-56 [49] K. Shimizu, H. Furukawa, N. Kobayashi, Y Itaya, A. Satsuma, Effects of Brønsted and Lewis acidities on activity and selectivity of heteropoly acid-base catalysts for hydrolysis of cellobiose and cellulose, Green Chem., 11 (10) (2009)1627-1632 [50] H. Gao, Y. Peng, J. Pan, J. Zeng, C. Song, Y. Zhang, Y. Yan, W. Shi, Synthesis and evaluation of macroporous polymerized solid acid derived from Pickering HIPEs for catalyzing cellulose into 5-hydroxymethylfurfural in an ionic liquid, RSC Adv., 4 (81) (2014)43029-43038 [51] J. Wang, L. Zhu, Y. Wang, H. Cui, Y. Zhang, Y. Zhang, Fructose fehydration to 5-HMF over three sulfonated carbons:effect of different pore structures, J. Chem. Technol. Biotechnol., 92 (6) (2017)1454-1463 [52] N. Candu, M. Fergani, M. Verziu, B. Cojocaru, B. Jurca, N. Apostol, C. Teodorescu, V. Parvulescu, S. Coman, Efficient glucose dehydration to HMF onto Nb-BEA catalysts, Catal. Today, 325 (2019)109-116 [53] F. Parveen, S. Upadhyayula, Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities-A mechanistic and experimental study, Fuel Process. Technol., 162 (2017)30-36 [54] J. Wang, H. Cui, Y. Wang, R. Zhao, Y. Xie, M. Wang, W. Yi, Efficient catalytic conversion of cellulose to levulinic acid in the biphasic system of molten salt hydrate and methyl isobutyl ketone, Green Chem., 22 (13) (2020)4240-4251 [55] X. Li, K. Peng, Q. Xia, X. Liu, Y. Wang, Efficient conversion of cellulose into 5-hydroxymethylfurfural over niobia/carbon composites, Chem. Eng. J., 332 (2018)528-536 [56] V. Russo, C. Rossano, E. Salucci, R. Tesser, T. Salmi, M. Serio, Intraparticle diffusion model to determine the intrinsic kinetics of ethyllevulinate synthesis promoted by Amberlyst-15, Chem. Eng. Sci., 228 (2020)115974 [57] D. Chen, F. Liang, D. Feng, m. Xian, H. Zhang, H. Liu, F. Du, An efficient route from reproducible glucose to 5-hydroxymethlfurfural catalyzed by porous coordination polymer heterogeneous catalysts, Chem. Eng. J., 300 (2016)177-184 [58] I. Elsayed, M. Mashaly, F. Eltaweel M. A. Jackson, E. B. Hassan, Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst, Fuel, 221 (2018)407-416 |
[1] | Jinlong Liu, Chenye Wang, Xingrui Wang, Chen Zhao, Huiquan Li, Ganyu Zhu, Jianbo Zhang. Reconstruction and recovery of anatase TiO2 from spent selective catalytic reduction catalyst by NaOH hydrothermal method [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 53-60. |
[2] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[3] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
[4] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[5] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[6] | Fei Li, Xuemei Wang, Pengze Zhang, Qinqin Wang, Mingyuan Zhu, Bin Dai. Nitrogen and phosphorus co-doped activated carbon induces high density Cu+ active center for acetylene hydrochlorination [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 193-199. |
[7] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[8] | Wei Yang, Yalun Ma, Xu Zhang, Fan Yang, Dong Zhang, Shengji Wu, Huanghu Peng, Zezhou Chen, Lei Che. Effect of acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust in subcritical water [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 195-204. |
[9] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[10] | Jiajia Chen, Xinyu Lu, Dandan Wang, Pengcheng Xiu, Xiaoli Gu. Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 50-62. |
[11] | Linlin Su, Meijun Chen, Li Gong, Hua Yang, Chao Chen, Jun Wu, Ling Luo, Gang Yang, Lulu Long. Boost activation of peroxymonosulfate by iron doped K2-xMn8O16: Mechanism and properties [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 88-97. |
[12] | Qi Yang, Weikang Dai, Maoshuai Li, Jie Wei, Yi Feng, Cheng Yang, Wanxin Yang, Ying Zheng, Jie Ding, Mei-Yan Wang, Xinbin Ma. Enhanced selective hydrogenation of glycolaldehyde to ethylene glycol over Cu0-Cu+ sites [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 141-150. |
[13] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[14] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[15] | Zhenfu Wang, Jie Gao, Qinghong Shi, Xiaoyan Dong, Yan Sun. Facile purification and immobilization of organophosphorus hydrolase on protein-inorganic hybrid phosphate nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 119-125. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||