Chinese Journal of Chemical Engineering ›› 2023, Vol. 55 ›› Issue (3): 236-245.DOI: 10.1016/j.cjche.2022.05.029
Previous Articles Next Articles
Mengting Liu1, Xuexue Dong1, Zengjing Guo2, Aihua Yuan1, Shuying Gao3, Fu Yang1
Received:
2022-03-25
Revised:
2022-05-17
Online:
2023-06-03
Published:
2023-03-28
Contact:
Shuying Gao,E-mail:gao415127@163.com;Fu Yang,E-mail:fuyang@just.edu.cn
Supported by:
Mengting Liu1, Xuexue Dong1, Zengjing Guo2, Aihua Yuan1, Shuying Gao3, Fu Yang1
通讯作者:
Shuying Gao,E-mail:gao415127@163.com;Fu Yang,E-mail:fuyang@just.edu.cn
基金资助:
Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica[J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 236-245.
Mengting Liu, Xuexue Dong, Zengjing Guo, Aihua Yuan, Shuying Gao, Fu Yang. Enabling tandem oxidation of benzene to benzenediol over integrated neighboring V-Cu oxides in mesoporous silica[J]. 中国化学工程学报, 2023, 55(3): 236-245.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.05.029
[1] G. Vega, A. Quintanilla, M. Belmonte, J.A. Casas, Kinetic study of phenol hydroxylation by H2O2 in 3D Fe/SiC honeycomb monolithic reactors: Enabling the sustainable production of dihydroxybenzenes, Chem. Eng. J. 428 (2022) 131128. [2] Q. Zhang, Y. Zhai, F.M. Wang, X.B. Zhang, G.J. Lv, Y.K. Liu, M.Y. Li, M.Y. Li, One-step controllable strategy for synthesizing hierarchical Fe-MFI/MCM-41 composites using CTAB as a dual-functional template, Microporous Mesoporous Mater. 329 (2022) 111515. [3] Y.Y. Huang, H. Konnerth, J.Y. Yeh, M.H.G. Prechtl, C.Y. Wen, K.C.W. Wu, De novo synthesis of Cr-embedded MOF-199 and derived porous CuO/CuCr2O4 composites for enhanced phenol hydroxylation, Green Chem. 21 (8) (2019) 1889–1894. [4] Z. Huang, J.P. Lumb, Phenol-directed C-H functionalization, ACS Catal. 9 (1) (2019) 521–555. [5] J.M. Jiang, M.H. Zhu, Y.S. Liu, Y.Q. Li, T. Gui, N. Hu, F. Zhang, X.S. Chen, H. Kita, Influences of synthesis conditions on preparation and characterization of Ti-MWW zeolite membrane by secondary hydrothermal synthesis, Microporous Mesoporous Mater. 297 (2020) 110004. [6] H.L. Li, L.B. Wang, Y.Z. Dai, Z.T. Pu, Z.H. Lao, Y.W. Chen, M.L. Wang, X.S. Zheng, J.F. Zhu, W.H. Zhang, R. Si, C. Ma, J. Zeng, Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation, Nat. Nanotechnol. 13 (5) (2018) 411–417. [7] J. He, Z.J. Wu, Q.Q. Gu, Y.S. Liu, S.Q. Chu, S.H. Chen, Y.F. Zhang, B. Yang, T.H. Chen, A.Q. Wang, B.M. Weckhuysen, T. Zhang, W.H. Luo, Zeolite-tailored active site proximity for the efficient production of pentanoic biofuels, Angew. Chem. Int. Ed. 60 (44) (2021) 23713–23721. [8] W.H. Luo, W.X. Cao, P.C.A. Bruijnincx, L. Lin, A.Q. Wang, T. Zhang, Zeolite-supported metal catalysts for selective hydrodeoxygenation of biomass-derived platform molecules, Green Chem. 21 (14) (2019) 3744–3768. [9] P. Zhou, X.G. Hou, Y.G. Chao, W.X. Yang, W.Y. Zhang, Z.J. Mu, J.P. Lai, F. Lv, K. Yang, Y.X. Liu, J. Li, J.Y. Ma, J. Luo, S.J. Guo, Synergetic interaction between neighboring platinum and ruthenium monomers boosts CO oxidation, Chem. Sci. 10 (23) (2019) 5898–5905. [10] B. Lu, Z. Wang, S.X. Ma, S.J. Mao, Z.R. Chen, Y. Wang, Spatial charge separation induced new mechanism of efficient C-C coupling by forming ion-pair intermediates, Chem Catal. 1 (7) (2021) 1449–1465. [11] Y. Wang, H. Lu, P.F. Xu, Asymmetric catalytic cascade reactions for constructing diverse scaffolds and complex molecules, Acc. Chem. Res. 48 (7) (2015) 1832–1844. [12] Y. Wang, R.G. Han, Y.L. Zhao, S. Yang, P.F. Xu, D. Dixon, Asymmetric organocatalytic relay cascades: Catalyst-controlled stereoisomer selection in the synthesis of functionalized cyclohexanes, Angew. Chem. Int. Ed. 48 (52) (2009) 9834–9838. [13] C.J. Nalbandian, Z.E. Brown, E. Alvarez, J.L. Gustafson, Lewis base/bronsted acid dual-catalytic C-H sulfenylation of aromatics, Org. Lett. 20 (11) (2018) 3211–3214. [14] H. Chen, Z.Z. Yang, H.G. Peng, K.C. Jie, P.P. Li, S.M. Ding, W. Guo, X. Suo, J.X. Liu, R. Yan, W.M. Liu, C.L. Do-Thanh, H.M. Wang, Z.D. Wang, L. Han, W.M. Yang, S. Dai, A bifunctional zeolitic porous liquid with incompatible Lewis pairs for antagonistic cascade catalysis, Chem 7 (12) (2021) 3340–3358. [15] A. Ramirez, X. Gong, M. Caglayan, S.F. Nastase, E. Abou-Hamad, L. Gevers, L. Cavallo, A. Dutta Chowdhury, J. Gascon, Selectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis, Nat. Commun. 12 (1) (2021) 5914. [16] Y.C. Chai, W.L. Dai, G.J. Wu, N.J. Guan, L.D. Li, Confinement in a zeolite and zeolite catalysis, Acc. Chem. Res. 54 (13) (2021) 2894–2904. [17] Y.Q. Sun, Z.K. Zhao, Implanting Copper-Zinc nanoparticles into the matrix of mesoporous alumina as a highly selective bifunctional catalyst for direct synthesis of dimethyl ether from syngas, ChemCatChem 12 (5) (2020) 1276–1281. [18] S.W. Yang, C. Wu, J.H. Wang, H.D. Shen, K. Zhu, X. Zhang, Y.L. Cao, Q.Y. Zhang, H.P. Zhang, Metal single-atom and nanoparticle double-active-site relay catalysts: Design, preparation, and application to the oxidation of 5-hydroxymethylfurfural, ACS Catal. 12 (2) (2022) 971–981. [19] C.C. Wang, J. Huang, X.H. Li, S. Kramer, G.Q. Lin, X.W. Sun, Asymmetric organocatalytic[4 + 1]annulations: Enantioselective construction of multifunctionalized spirocyclopentane oxindoles bearing α, α-disubstituted α-amino-β-keto esters, Org. Lett. 20 (10) (2018) 2888–2891. [20] Y.H. Chen, D.H. Li, Y.K. Liu, Diversified synthesis of chiral chromane-containing polyheterocyclic compounds via asymmetric organocatalytic cascade reactions, ACS Omega 3 (12) (2018) 16615–16625. [21] Z.L. Li, Y.Z. Qu, J.J. Wang, H.L. Liu, M.R. Li, S. Miao, C. Li, Highly selective conversion of carbon dioxide to aromatics over tandem catalysts, Joule 3 (2) (2019) 570–583. [22] S.S. Chen, M.S. Wu, Z.Y. Han, Palladium-catalyzed cascade sp2 C–H functionalization/intramolecular asymmetric allylation: From aryl ureas and 1, 3-dienes to chiral indolines, Angew. Chem. Int. Ed. 56 (23) (2017) 6641–6645. [23] P.K. Khatri, B. Singh, S.L. Jain, B. Sain, A.K. Sinha, Cyclotriphosphazene grafted silica: A novel support for immobilizing the oxo-vanadium Schiff base moieties for hydroxylation of benzene, Chem. Commun. (Camb) 47 (5) (2011) 1610–1612. [24] K. Kamata, T. Yamaura, N. Mizuno, Chemo- and regioselective direct hydroxylation of arenes with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate, Angew. Chem. Int. Ed Engl. 51 (29) (2012) 7275–7278. [25] P. Borah, X. Ma, K.T. Nguyen, Y.L. Zhao, A vanadyl complex grafted to periodic mesoporous organosilica: A green catalyst for selective hydroxylation of benzene to phenol, Angew. Chem. Int. Ed. 51 (31) (2012) 7756–7761. [26] Y. Zhou, Z.P. Ma, J.J. Tang, N. Yan, Y.H. Du, S.B. Xi, K. Wang, W. Zhang, H.M. Wen, J. Wang, Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism, Nat. Commun. 9 (1) (2018) 2931. [27] X.X. Dong, X.Y. Wang, H. Song, Y. Zhang, A.H. Yuan, Z.J. Guo, Q. Wang, F. Yang, Enabling efficient aerobic 5-hydroxymethylfurfural oxidation to 2, 5-furandicarboxylic acid in water by interfacial engineering reinforced Cu-Mn oxides hollow nanofiber, ChemSusChem (2022) e202200076. [28] S.R. Docherty, C. Copéret, Deciphering metal-oxide and metal-metal interplay via surface organometallic chemistry: A case study with CO2 hydrogenation to methanol, J. Am. Chem. Soc. 143 (18) (2021) 6767–6780. [29] F. Yang, R.Y. Wang, S.J. Zhou, X.Y. Wang, Y. Kong, S.Y. Gao, Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration, Chin. J. Chem. Eng. 45 (2022) 182–193. [30] R.Y. Wang, X.F. Liu, F. Yang, S.Y. Gao, S.J. Zhou, Y. Kong, Neighboring Cu toward Mn site in confined mesopore to trigger strong interplay for boosting catalytic epoxidation of styrene, Appl. Surf. Sci. 537 (2021) 148100. [31] F. Yang, S.Y. Gao, C.R. Xiong, S.F. Long, X.M. Li, T. Xi, Y. Kong, Direct templating assembly route for the preparation of highly-dispersed vanadia species encapsulated in mesoporous MCM-41 channel, RSC Adv. 5 (88) (2015) 72099–72106. [32] J.C. Bedoya, R. Valdez, L. Cota, M.A. Alvarez-Amparán, A. Olivas, Performance of Al-MCM-41 nanospheres as catalysts for dimethyl ether production, Catal. Today 388-389 (2022) 55–62. [33] J.W. Cleveland, J.I. Choi, R.S. Sekiya, J. Cho, H.J. Moon, S.S. Jang, C.W. Jones, Cooperativity in the aldol condensation using bifunctional mesoporous silica–poly(styrene) MCM-41 organic/inorganic hybrid catalysts, ACS Appl. Mater. Interfaces 14 (9) (2022) 11235–11247. [34] X.Y. Lu, H.Q. Guo, J.J. Chen, D.Y. Wang, A.F. Lee, X.L. Gu, Selective catalytic transfer hydrogenation of lignin to alkyl guaiacols over NiMo/Al-MCM-41, ChemSusChem 15 (7) (2022) e202200099. [35] S.Y. Gao, F. Yang, X.F. Liu, X. Hu, C.J. Song, S.J. Zhou, Y. Kong, Exposed ternary metal active sites on mesoporous channels: A promising catalyst for low-temperature selective catalytic oxidization of phenol with H2O2, Mol. Catal. 478 (2019) 110568. [36] F. Yang, B.B. Wang, S.J. Zhou, S.F. Long, X.F. Liu, Y. Kong, Micropore-enriched CuO-based silica catalyst directly prepared by anionic template-induced method and its boosting catalytic activity in olefins epoxidation, Microporous Mesoporous Mater. 246 (2017) 215–224. [37] F. Yang, S.P. Ding, H.B. Song, N. Yan, Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene, Sci. China Mater. 63 (6) (2020) 982–992. [38] C. Ciotonea, A. Chirieac, B. Dragoi, J. Dhainaut, M. Marinova, S. Pronier, S. Arii-Clacens, J.P. Dacquin, E. Dumitriu, A. Ungureanu, S. Royer, Playing on 3D spatial distribution of Cu-Co (oxide) nanoparticles in inorganic mesoporous sieves: Impact on catalytic performance toward the cinnamaldehyde hydrogenation, Appl. Catal. A Gen. 623 (2021) 118303. [39] A. Jankowska, A. Chłopek, A. Kowalczyk, M. Rutkowska, W. Mozgawa, M. Michalik, S.Q. Liu, L. Chmielarz, Enhanced catalytic performance in low-temperature NH3-SCR process of spherical MCM-41 modified with Cu by template ion-exchange and ammonia treatment, Microporous Mesoporous Mater. 315 (2021) 110920. [40] K. Pakzad, H. Alinezhad, M. Nasrollahzadeh, Green synthesis of Ni@Fe3O4 and CuO nanoparticles using Euphorbia Maculata extract as photocatalysts for the degradation of organic pollutants under UV-irradiation, Ceram. Int. 45 (14) (2019) 17173–17182. [41] S. Pithakratanayothin, R. Tongsri, T. Chaisuwan, S. Wongkasemjit, P. Khemthong, S. Limpijumnong, P. Pharanchai, K. Malaicharoen, Discovery of mono(u-oxo)dicopper and bis(u-oxo)dicopper in ordered Cu incorporated in SBA-15 via Sol-gel process from silatrane at room temperature: An in situ XAS investigation, Microporous Mesoporous Mater. 301 (2020) 110225. [42] Y.L. Wu, Z.F. Han, X. Yan, W.Z. Lang, Y.J. Guo, Effective synthesis of vanadium-doped mesoporous silica nanospheres by Sol-gel method for propane dehydrogenation reaction, Microporous Mesoporous Mater. 330 (2022) 111616. [43] L. Lyu, L.L. Zhang, C. Hu, Enhanced Fenton-like degradation of pharmaceuticals over framework copper species in copper-doped mesoporous silica microspheres, Chem. Eng. J. 274 (2015) 298–306. [44] E.X. Yuan, P. Ni, W.L. Zhuang, R.Q. Jian, P.M. Jian, Synergic catalysis by a CuO-like phase and Cu0 for anaerobic dehydrogenation of 2, 3-butanediol, J. Catal. 382 (2020) 256–268. [45] A.S. Al-Awadi, A.M. El-Toni, M. Alhoshan, A. Khan, M.A. Shar, A.E. Abasaeed, S.M. Al-Zahrani, Synergetic impact of secondary metal oxides of Cr-M/MCM41 catalyst nanoparticles for ethane oxidative dehydrogenation using carbon dioxide, Crystals 10 (1) (2019) 7. [46] H.X. Cao, J. Zhang, C.L. Guo, J.G. Chen, X.K. Ren, Modifying surface properties of KIT-6 zeolite with Ni and V for enhancing catalytic CO methanation, Appl. Surf. Sci. 426 (2017) 40–49. [47] B. Nanda, A.C. Pradhan, K.M. Parida, Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr(VI), Chem. Eng. J. 316 (2017) 1122–1135. [48] F. Adam, R. Thankappan, Oxidation of benzene over bimetallic Cu-Ce incorporated rice husk silica catalysts, Chem. Eng. J. 160 (1) (2010) 249–258. [49] V.M. Vaschetti, G.A. Eimer, A.L. Cánepa, S.G. Casuscelli, Catalytic performance of V-MCM-41 nanocomposites in liquid phase limonene oxidation: Vanadium leaching mitigation, Microporous Mesoporous Mater. 311 (2021) 110678. [50] O. Daoura, G. Fornasieri, M. Boutros, N. El Hassan, P. Beaunier, C. Thomas, M. Selmane, A. Miche, C. Sassoye, O. Ersen, W. Baaziz, P. Massiani, A. Bleuzen, F. Launay, One-pot prepared mesoporous silica SBA-15-like monoliths with embedded Ni particles as selective and stable catalysts for methane dry reforming, Appl. Catal. B Environ. 280 (2021) 119417. [51] A. Held, J. Kowalska-Kuś, E. Janiszewska, A. Jankowska, K. Nowińska, Epoxidation of propane with oxygen and/or nitrous oxide over silica-supported vanadium oxide, J. Catal. 404 (2021) 231–243. [52] P.P. Wu, Z.K. He, Y.H. Liu, L. Song, C.Z. Wang, E. Muhumuza, P. Bai, L.M. Zhao, S. Mintova, Z.F. Yan, Compatibility between activity and selectivity in catalytic oxidation of benzyl alcohol with Au–Pd nanoparticles through redox switching of SnOx, ACS Appl. Mater. Interfaces 13 (42) (2021) 49780–49792. [53] M. Sharma, G. Saikia, K. Ahmed, S.R. Gogoi, V.G. Puranik, N.S. Islam, Vanadium-based polyoxometalate complex as a new and efficient catalyst for phenol hydroxylation under mild conditions, New J. Chem. 42 (7) (2018) 5142–5152. [54] W. Wang, G. Ding, T. Jiang, P. Zhang, T. Wu, B. Han, Facile one-pot synthesis of VxOy@C catalysts using sucrose for the direct hydroxylation of benzene to phenol, Green Chem. 15 (2013) 1150-1154. [55] R. Mistri, M. Rahaman, J. Llorca, K.R. Priolkar, S. Colussi, B.C. Ray, A. Gayen, Liquid phase selective oxidation of benzene over nanostructured CuxCe1-xO2-δ (0.03 ≤ x ≤ 0.15), J. Mol. Catal. A Chem. 390 (2014) 187–197. |
[1] | Juan Du, Aibing Chen, Senlin Hou, Xueqing Gao. Self-deposition for mesoporous carbon nanosheet with supercapacitor application [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 34-40. |
[2] | Jialei Sha, Chenyi Liu, Zhihong Ma, Weizhong Zheng, Weizhen Sun, Ling Zhao. Understanding the interfacial behaviors of benzene alkylation with butene using chloroaluminate ionic liquid catalyst: A molecular dynamics simulation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 44-52. |
[3] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 180-191. |
[4] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[5] | Kechang Gao, Shengjuan Shao, Zhixing Li, Jiaxin Jing, Weizhou Jiao, Youzhi Liu. Kinetics of the direct reaction between ozone and phenol by high-gravity intensified heterogeneous catalytic ozonation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 317-323. |
[6] | Yadong Li, Yuanhui Shen, Zhaoyang Niu, Junpeng Tian, Donghui Zhang, Zhongli Tang, Wenbin Li. Process analysis of temperature swing adsorption and temperature vacuum swing adsorption in VOCs recovery from activated carbon [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 346-360. |
[7] | Yishuang Wang, Na Li, Mingqiang Chen, Defang Liang, Chang Li, Quan Liu, Zhonglian Yang, Jun Wang. Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 176-190. |
[8] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[9] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[10] | Wenjian Zhu, Xuhua Shen, Rui Ou, Manoj Murugesan, Aihua Yuan, Jianfeng Liu, Xiaocai Hu, Zhen Yang, Ming Shen, Fu Yang. Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 194-206. |
[11] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[12] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 182-193. |
[13] | Xiao Zhao, Xuan Shi, Zhongshun Chen, Long Xu, Chengyi Dai, Yazhou Zhang, Xinwen Guo, Dongyuan Yang, Xiaoxun Ma. Efficient conversion of benzene and syngas to toluene and xylene over ZnO-ZrO2&H-ZSM-5 bifunctional catalysts [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 203-210. |
[14] | Yufei Yang, Jieyi Ma, Junyan Wu, Weixia Zhu, Yadong Zhang. Experimental and theoretical study on N-hydroxyphthalimide and its derivatives catalyzed aerobic oxidation of cyclohexylbenzene [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 124-130. |
[15] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||