[1] J.B. Chen, C.J. Liu, X.G. Yuan, G.C. Yu, CFD simulation of flow and mass transfer in structured packing distillation columns, Chin. J. Chem. Eng. 17 (3) (2009) 381-388. [2] M. Murase, Y. Utanohara, I. Kinoshita, N. Minami, A. Tomiyama, Numerical calculations on countercurrent air-water flow in small-scale models of a PWR hot leg using a VOF model, 17th Inter. Conf. Nuclear Engineering, AMSE 2009, pp. 141-148. [3] M. Murase, Y. Utanohara, I. Kinoshita, C. Yanagi, T. Takata, A. Yamaguchi, A. Tomiyama, VOF simulations of countercurrent gas-liquid flow in a PWR hot leg, J. Comput. Multiphase Flow 4 (4) (2012) 375-386. [4] M.J.Wang, F.Mayinger, Simulation and analysis of thermal-hydraulic phenomena in a PWR hot leg related to SBLOCA, Nucl. Eng. Des. 155 (1995) 173-193. [5] S.C. Lee, S.G. Bankoff, Stability of steam-water countercurrent flow in an inclined channel: flooding, J. Heat Transf. 105 (4) (1983) 713-718. [6] N. Minami, D. Nishiwaki, T. Nariai, A. Tomiyama, M. Murase, Countercurrent gasliquid flow in a PWR hot leg under reflux cooling (I) air-water tests for 1/15-scale model of a PWR hot leg, J. Nucl. Sci. Technol. 47 (2) (2010) 142-148. [7] Y. Utanohara, I. Kinoshita, M. Murase, N. Minami, A. Tomiyama, Effects of interfacial friction correlations on numerical calculations for countercurrent gas-liquid flow in a PWR hot leg, 13th Inter. Topical Meeting Nucl. Reactor Thermal Hydraulics (NURETH-13), Kanazawa City, Japan, 2009. [8] T. Höhne, P. Apanasevich, D. Lucas, C. Vallée, M. Beyer, Application of a new drag coefficient model at CFD-simulations on free surface flows relevant for the nuclear reactor safety analysis, Ann. Nucl. Energy 39 (1) (2012) 70-82. [9] T. Höhne, D. Lucas, Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model, Int. J. Heat Fluid Flow 32 (5) (2011) 1047-1056. [10] T. Höhne, D. Lucas, C. Vallée, G.A.M. Zabala, CFD studies on the phenomena around counter-current flow limitations of gas/liquid two-phase flow in a model of a PWR hot leg, Nucl. Eng. Des. 24 (12) (2011) 5138-5148. [11] T. Höhne, C. Vallée, Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density model, J. Comput. Multiphase Flow 2 (3) (2010) 131-143. [12] Y. Egorov, M. Boucker, A. Martin, S. Pigny, M. Scheuerer, S. Willemsen, Validation of CFD codeswith PTS-relevant test cases, 5th EuratomFramework Programme ECORA project, 2004. [13] A. Fluent, 14.5, Theory Guide, ANSYS, Inc., Canonsburg, PA, 2012. [14] D.C.Wilcox, Turbulencemodeling for CFD, DCWIndustries, La Canada, vol. (2) 1998, pp. 103-217. [15] Deendarlianto, A. Ousaka, A. Kariyasaki, T. Fukanod, Investigation of liquid film behavior at the onset of flooding during adiabatic counter-current air-water twophase flow in an inclined pipe, Nucl. Eng. Des. 235 (21) (2005) 2281-2294. [16] Deendarlianto, A. Ousaka, Indarto, A. Kariyasaki, D. Lucas, K. Vierow, C. Vallee, K. Hogan, The effects of surface tension on flooding in counter-current two-phase flow in an inclined tube, Exp. Thermal Fluid Sci. 34 (7) (2010) 813-826. [17] A. Ousaka, Deendarlianto, A. Kariyasaki, T. Fukano, Prediction of flooding gas velocity in gas-liquid counter-current two-phase flow in inclined pipes, Nucl. Eng. Des. 236 (12) (2006) 1282-1292. [18] P. Valluri, P.D.M. Spelt, C.J. Lawrence, G.F. Hewitt, Numerical simulation of the onset of slug initiation in laminar horizontal channel flow, Int. J. Multiphase Flow 34 (2) (2008) 206-225. [19] Y.Y. Trifonov, Flooding in two-phase counter-current flows: numerical investigation of the gas-liquid wavy interface using the Navier-Stokes equations, Int. J. Multiphase Flow 36 (7) (2010) 549-557. [20] M.N. Pantzali, A.A. Mouza, S.V. Paras, Counter-current gas liquid flow and incipient flooding in inclined small diameter tubes, Chem. Eng. Sci. 63 (15) (2008) 3966-3978. [21] A.A. Mouza, S.V. Paras, A.J. Karabelas, Incipient flooding in inclined tubes of small diameter, Int. J. Multiphase Flow 29 (9) (2003) 1395-1412. [22] E.I.P. Drosos, S.V. Paras, A.J. Karabelas, Counter-current gas-liquid flow in a vertical narrow channel—liquid film characteristics and flooding phenomena, Int. J. Multiphase Flow 32 (1) (2006) 51-81. [23] G. Karimi, M. Kawaji, Flooding in vertical counter-current flow, Nucl. Eng. Des. 200 (1) (2000) 95-105. [24] M. Vijayan, S. Jayanti, A.R. Balakrishnan, Effect of tube diameter on flooding, Int. J. Multiphase Flow 27 (5) (2001) 797-816. [25] S.J. Luo, H.Z. Li, W.Y. Fei, Y.D. Wang, Liquid film characteristics on surface of structured packing, Chin. J. Chem. Eng. 17 (1) (2009) 47-52. [26] M. Biage, J.M. Delhaye, P. Vernier, The flooding transition: a detailed experimental investigation of the liquid film before the flooding point, ANS Proceedings, National Heat Transfer Conference, ANS 1989, pp. 53-60. [27] G.J. Zabaras, Studies of Vertical Annular Gas-Liquid Flows(Ph.D. thesis) Univ. Houston, 1985. [28] D.M. Jepson, B.J. Azzopardi, P.B. Whalley, The effect of physical properties on drop size in annular flow, Int. Heat Transfer Conf, 1990. [29] J.C. Sacramento, P.J. Heggs, The role of flooding in the design of vent and reflux condensers, Appl. Therm. Eng. 29 (7) (2009) 1338-1345. [30] T. Fukano, T. Furukawa, Prediction of the effects of liquid viscosity on interfacial shear stress and frictional pressure drop in vertical upward gas-liquid annular flow, Int. J. Multiphase Flow 24 (4) (1998) 587-603. [31] A. Zapke, D.G. Kroeger, Countercurrent gas-liquid flow in inclined and vertical ducts — I: flow patterns, pressure drop characteristics and flooding, Int. J. Multiphase Flow 26 (9) (2000) 1439-1455. [32] A.A. Mouza, M.N. Pantzali, S.V. Paras, Falling film and flooding phenomena in small diameter vertical tubes: the influence of liquid properties, Chem. Eng. Sci. 60 (18) (2005) 4981-4991. |