[1] T.Y. Chai, Operational optimization and feedback control for complex industrial processes, Acta Autom. Sin. 39 (11) (2013) 1744-1757.[2] P. Zhou, T.Y. Chai, H. Wang, Intelligent optimal-setting control for grinding circuits of material processing, IEEE Trans. Autom. Sci. Eng. 6 (4) (2009) 730-743.[3] Y. Zeng, E. Forssberg, Monitoring grinding parameters by signal measurements for an industrial ball mill, Int. J. Mater. Process. 40 (1) (1993) 1-16.[4] P. Huang,M.P. Jia, B.L. Zhong, Investigation onmeasuring the fill level of an industrial ballmill based on the vibration characteristics of themill shell, Mater. Eng. 14 (22) (2009) 1200-1208.[5] J. Tang, L.J. Zhao, J.W. Zhou, H. Yue, T.Y. Chai, Experimental analysis of wet mill load based on vibration signals of laboratory-scale ball mill shell, Miner. Eng. 23 (9) (2010) 720-730.[6] T.J. Feng, H.G. Wang, W.L. Xu, N. Xu, An on-line mill load monitoring system based on shell vibration signals, Min. Metall. 19 (2) (2012) 66-69.[7] S.P. Das, D.P. Das, S.K. Behera, B.K. Mishra, Interpretation of mill vibration signal via wireless sensing, Mater. Eng. 24 (3-4) (2011) 245-251.[8] S.Mohanty, K.K. Gupta, K.S. Raju, Vibration feature extraction and analysis of industrial ball mill using MEMS accelerometer sensor and synchronized data analysis technique, Procedia Computer Sci. 58 (2015) 217-224.[9] J. Tang, L.J. Zhao, H. Yue, T.Y. Chai, Present status and future developments of detection method for mill load, Control. Eng. China 17 (5) (2010) 565-570 (in Chinese).[10] K. Fukunaga, Effects of sample size in classifier design, IEEE Trans. Pattern Anal. Mach. Intell. 11 (8) (1989) 873-885.[11] L.O. Jiménez-Rodríguez, E. Arzuaga-Cruz, M. Vélez-Reyes, Unsupervised linear feature-extraction methods and their effects in the classification of highdimensional data, IEEE Trans. Geosci. Remote Sens. 45 (2) (2007) 469-483.[12] L. Wang, Feature selection with kernel class separability, IEEE Trans. Pattern Anal. Mach. Intell. 30 (9) (2008) 1534-1546.[13] J. Tang, T.Y. Chai, W. Yu, L.J. Zhao, Feature extraction and selection based on vibration spectrumwith application to estimate the load parameters of ballmill in grinding process, Control. Eng. Pract. 20 (10) (2012) 991-1004.[14] J. Tang, T.Y. Chai, W. Yu, L.J. Zhao, S.J. Qin, KPCA based multi-spectral segments feature extraction and GA based compound optimization for frequency spectrum data modeling [C], The 50th IEEE conference on decision and control and european control conference, CDC-ECC11, Orlando, Florida 2011, pp. 5193-5198.[15] J. Tang, D.H.Wang, T.Y. Chai, Predicting mill load using partial least squares and extreme learning machines, Soft. Comput. 16 (9) (2012) 1585-1594.[16] C. Dhanjal, S.R. Gunn, J. Shawe-Taylor, Efficient sparse kernel feature extraction based on partial least squares, IEEE Trans. Pattern Anal. Mach. Intell. 31 (8) (2009) 1347-1361.[17] R. Rosipal, L.J. Trejo, Kernel partial least squares regression in reproducing kernel Hilbert space, J. Mach. Learn. Res. 2 (2) (2002) 97-123.[18] C. Shang, F. Yang, D.X. Huang,W.X. Lyu, Data-driven soft sensor development based on deep learning, J. Process Control 24 (2014) 223-233.[19] P. Kadlec, B. Gabrys, S. Strand, Data-driven soft-sensors in the process industry, Comput. Chem. Eng. 33 (4) (2009) 795-814.[20] Y. Bengio, O. Delalleau, N. Le Roux, The curse of highly variable functions for local kernel machines, Adv. Neural Inf. Process. Syst. 18 (2006) 107.[21] G.E. Dahl, D. Yu, L. Deng, A. Acero, Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition, IEEE Trans. Audio Speech Lang. Process. 20 (1) (2012) 30-42.[22] Y. Bengio, Learning deep architectures for AI, Found. Trends Mach. Learn. 2 (1) (2009) 1-127.[23] J.A.K. Suykens, J. Vandewalle, Least squares suppor vector machine classifiers, Neural. Process. Lett. 9 (3) (1999) 293-300.[24] T.G. Dietterieg, Machine-learning research: four current directions, AI Mag. 18 (4) (1997) 97-136.[25] J. Tang, T.Y. Chai, L.J. Zhao, H. Yue, X.P. Zheng, Ensemble modeling for parameters of ball-mill load in grinding process based on frequency sepctrum of shell vibration, Chin. Control Theory Appl. 29 (2012) 183-201 (In Chinese).[26] J. Tang, T.Y. Chai, W. Yu, L.J. Zhao, Modeling load parameters of ball mill in grinding process based on selective ensemblemultisensor information, IEEE Trans. Autom. Sci. Eng. 10 (3) (2013) 726-740.[27] J. Tang, T.Y. Chai,W. Yu, L.J. Zhao, On-line KPLS algorithm with application to ensemble modeling parameters of mill load, Acta Autom. Sin. 39 (2013) 471-486.[28] Z.H. Zhou, J.Wu, W. Tang, Ensembling neural networks: many could be better than all, Artif. Intell. 137 (1-2) (2002) 239-263.[29] D.H. Wang, M. Alhamdoosh, Evolutionary extreme learning machine ensembles with size control, Neurocomputing 102 (2013) 98-110. |