Chin.J.Chem.Eng. ›› 2016, Vol. 24 ›› Issue (4): 446-452.DOI: 10.1016/j.cjche.2015.11.022
Previous Articles Next Articles
Dengfeng Zhang, Peili Huo, Wei Liu
Received:
2015-02-09
Revised:
2015-08-31
Online:
2016-05-27
Published:
2016-04-28
Contact:
Dengfeng Zhang
Supported by:
Supported by the National Natural Science Foundation of China (41302132), Training Programmes of Innovation and Entrepreneurship for Undergraduates of Yunnan Province (Grant No. 201510674042) and the Introduced Talents Foundation of Kunming University of Science and Technology (KKSY201205160).
Dengfeng Zhang, Peili Huo, Wei Liu
通讯作者:
Dengfeng Zhang
基金资助:
Supported by the National Natural Science Foundation of China (41302132), Training Programmes of Innovation and Entrepreneurship for Undergraduates of Yunnan Province (Grant No. 201510674042) and the Introduced Talents Foundation of Kunming University of Science and Technology (KKSY201205160).
Dengfeng Zhang, Peili Huo, Wei Liu. Behavior of phenol adsorption on thermal modified activated carbon[J]. Chin.J.Chem.Eng., 2016, 24(4): 446-452.
Dengfeng Zhang, Peili Huo, Wei Liu. Behavior of phenol adsorption on thermal modified activated carbon[J]. Chinese Journal of Chemical Engineering, 2016, 24(4): 446-452.
[1] H.F. Stich, The beneficial and hazardous effects of simple phenolic compounds, Mutat. Res. Genet. Toxicol. 259(3-4) (1991) 307-324. [2] U. Beker, B. Ganbold, H. Dertli, D.D. Gülbayir, Adsorption of phenol by activated carbon: Influence of activation methods and solution pH, Energy Convers. Manag. 51(2) (2010) 235-240. [3] N.K. Sharma, L. Philip, Effect of cyanide on phenolics and aromatic hydrocarbons biodegradation under anaerobic and anoxic conditions, Chem. Eng. J. 256(2014) 255-267. [4] J. Jiang, Y. Gao, S.Y. Pang, X.T. Lu, Y. Zhou, J. Ma, Q.Wang, Understanding the role of manganese dioxide in the oxidation of phenolic compounds by aqueous permanganate, Environ. Sci. Technol. 49(1) (2015) 520-528. [5] N. Babazadeh, A. Sadeghipour, A.H. Colagar, Ammonium sulphate precipitation increases phenolics removal by PVP and PVPP from a crude protease preparation of sunflower seedlings, Clin. Biochem. 44(13, Supplement) (2011) S248-S249. [6] Z.M. Ahmed, S. Lyne, R. Shahrabani, Removal and recovery of phenol from phenolic wastewater via ion exchange and polymeric resins, Environ. Eng. Sci. 17(5) (2000) 245-255. [7] T.T. Garmus, L.C. Paviani, C.L. Queiroga, F.A. Cabral, Extraction of phenolic compounds from pepper-rosmarin (Lippia sidoides Cham.) leaves by sequential extraction in fixed bed extractor using supercritical CO2, ethanol and water as solvents, J. Supercrit. Fluids 99(2015) 68-75. [8] R.T. Yang, Adsorbents: Fundamentals and applications, John Wiley and Sons Inc., New York, 2003. [9] G.P. Wu, S.H. Chen, R.E. Levin, Rapid real-time loop-mediated isothermal amplification combined with coated activated carbon for detection of low numbers of Salmonella enterica from lettuce without enrichment, Food Control 56(2015) 47-52. [10] M.M. Vuk?evi?, A.M. Kalijadis, T.M. Vasiljevi?, B.M. Babi?, Z.V. Lauševi?, M.D. Lauševi?, Production of activated carbon derived from waste hemp (Cannabis sativa) fibers and its performance in pesticide adsorption, Microporous Mesoporous Mater. 214(2015) 156-165. [11] B.X. Shen, J.H. Chen, S.J. Yue, G.L. Li, A comparative study of modified cotton biochar and activated carbon based catalysts in low temperature SCR, Fuel 156(2015) 47-53. [12] J.-W. Park, C. Kim, H.-S. Ryu, G.-B. Cho, K.-K. Cho, K.-W. Kim, J.-H. Ahn, G.X.Wang, J.-P. Ahn, H.-J. Ahn, Effect of sulfur content in a sulfur-activated carbon composite on the electrochemical properties of a lithium/sulfur battery, Mater. Res. Bull. 69(2015) 24-28. [13] R.D. Vidic, C.H. Tessmer, L.J. Uranowski, Impact of surface properties of activated carbons on oxidative coupling of phenolic compounds, Carbon 35(9) (1997) 1349-1359. [14] E. Lorenc-Grabowska, G. Gryglewicz, M.A. Diez, Kinetics and equilibrium study of phenol adsorption on nitrogen-enriched activated carbons, Fuel 114(2013) 235-243. [15] C.J. Liu, X.Y. Liang, X.J. Liu, Q. Wang, N. Teng, L. Zhan, R. Zhang, W.M. Qiao, L.C. Ling, Wettability modification of pitch-based spherical activated carbon by air oxidation and its effects on phenol adsorption, Appl. Surf. Sci. 254(9) (2008) 2659-2665. [16] D.D. Do, Adsorption analysis: Equilibria and kinetics, Imperial College Press, London, 1998142-147. [17] G.G. Stavropoulos, P. Samaras, G.P. Sakellaropoulos, Effect of activated carbonsmodification on porosity, surface structure and phenol adsorption, J. Hazard. Mater. 151(2-3) (2008) 414-421. [18] R. Subha, C. Namasivayam, Kinetics and isotherm studies for the adsorption of phenol using low cost micro porous ZnCl2 activated coir pith carbon, Can. J. Civ. Eng. 36(1) (2009) 148-159. [19] Y. Sun, J. Wei, Y.S. Wang, G. Yang, J.P. Zhang, Production of activated carbon by K2CO3 activation treatment of cornstalk lignin and its performance in removing phenol and subsequent bioregeneration, Environ. Technol. 31(1) (2010) 53-61. [20] S. Altenor, B. Carene, E. Emmanuel, J. Lambert, J.J. Ehrhardt, S. Gaspard, Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation, J. Hazard. Mater. 165(1-3) (2009) 1029-1039. [21] V.V. Strelko, P.A. Kuts, V.S. Thrower, On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions, Carbon 38(10) (2000) 1499-1503. [22] J. Przepiorski, Enhanced adsorption of phenol from water by ammonia-treated activated carbon, J. Hazard. Mater. 135(1-3) (2006) 453-456. [23] J. Zhang, X.J. Jin, J.M. Gao, X.D. Zhang, Phenol adsorption on nitrogen-enriched activated carbon prepared from bamboo residues, Bioresources 9(1) (2014) 969-983. [24] B.B. Gathitu, W.-Y. Chen, M. McClure, Effects of coal interaction with supercritical CO2: physical structure, Ind. Eng. Chem. Res. 48(10) (2009) 5024-5034. [25] H.S. Teng, C.T. Hsieh, Influence of surface characteristics on liquid-phase adsorption of phenol by activated carbons prepared from bituminous coal, Ind. Eng. Chem. Res. 37(9) (1998) 3618-3624. [26] J.L. Figueiredo, N. Mahata, M.F.R. Pereira, M.J.S. Montero, J. Montero, F. Salvador, Adsorption of phenol on supercritically activated carbon fibres: Effect of texture and surface chemistry, J. Colloid Interface Sci. 357(1) (2011) 210-214. [27] I.I. Salame, T.J. Bandosz, Role of surface chemistry in adsorption of phenol on activated carbons, J. Colloid Interface Sci. 264(2) (2003) 307-312. [28] C.L. Mangun, K.R. Benak, M.A. Daley, J. Economy, Oxidation of activated carbon fibers: effect on pore size, surface chemistry, and adsorption properties, Chem. Mater. 11(12) (1999) 3476-3483. [29] H.P. Boehm, Surface oxides on carbon and their analysis: A critical assessment, Carbon 40(2) (2002) 145-149. [30] S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases, J. Am. Chem. Soc. 62(7) (1940) 1723-1732. [31] L.J. Li, G.K. Long, Effects of high temperature treatment on activated carbon pore structure, Chem. Ind. For. Prod. 19(3) (1999) 37-40. [32] M.W. Jung, K.H. Ahn, Y. Lee, K.P. Kim, J.S. Rhee, J. Tae Park, K.J. Paeng, Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC), Microchem. J. 70(2) (2001) 123-131. [33] N. Yoshizawa, Y. Yamada, M. Shiraishi, K. Kaneko, N. Setoyama, Evaluation of accessible and inaccessible microporosities of microporous carbons, J. Chem. Soc. Faraday Trans. 92(12) (1996) 2297-2302. [34] S. Biniak, G. Szymański, J. Siedlewski, A. ?wiatkowski, The characterization of activated carbons with oxygen and nitrogen surface groups, Carbon 35(12) (1997) 1799-1810. [35] J.M.V.Nabais, P.J.M. Carrott, M.M.L.R. Carrott, J.A.Menéndez, Preparation andmodification of activated carbon fibres by microwave heating, Carbon 42(7) (2004) 1315-1320. [36] L.R. Radovic, I.F. Silva, J.I.Ume, J.A. Menendez, C. Leon, A.W. Scaroni, An experimental and theoretical study of the adsorption of aromatics possessing electronwithdrawing and electron-donating functional groups by chemically modified activated carbons, Carbon 35(9) (1997) 1339-1348. [37] C. Moreno-Castilla, Adsorption of organic molecules from aqueous solutions on carbon materials, Carbon 42(1) (2004) 83-94. [38] A. D?browski, P. Podko?cielny, Z. Hubicki, M. Barczak, Adsorption of phenolic compounds by activated carbon-A critical review, Chemosphere 58(8) (2005) 1049-1070. [39] A.P. Terzyk, Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption, J. Colloid Interface Sci. 268(2) (2003) 301-329. [40] G. Yang, H.L. Chen, H.D. Qin, Y.J. Feng, Amination of activated carbon for enhancing phenol adsorption: Effect of nitrogen-containing functional groups, Appl. Surf. Sci. 293(2014) 299-305. [41] R.W. Coughlin, F.S. Ezra, Role of surface acidity in the adsorption of organic pollutants on the surface of carbon, Environ. Sci. Technol. 2(4) (1968) 291-297. [42] H.Z. Fu,M.H.Wang, Y.S. Ho, The most frequently cited adsorption research articles in the Science Citation Index (expanded), J. Colloid Interface Sci. 379(1) (2012) 148-156. [43] S. Ho, Citation review of Lagergren kinetic rate equation on adsorption reactions, Scientometrics 59(1) (2004) 171-177. [44] Y.S. Ho, Reviewof second-ordermodels for adsorption systems, J. Hazard.Mater. 136(3) (2006) 681-689. [45] S. Lagergren, Zur theorie der sogenannten adsorption gelöster stoffe, K. Sven. Vetenskapsakad. 24(2) (1898) 1-39. [46] Y.S. Ho, G. McKay, Sorption of dye from aqueous solution by peat, Chem. Eng. J. 70(2) (1998) 115-124. [47] Y.S. Ho, G. McKay, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Process Saf. Environ. 76(B4) (1998) 332-340. [48] R.S. Juang, F.C. Wu, R.L. Tseng, Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels, J. Colloid Interface Sci. 227(2) (2000) 437-444. [49] K. Mohanty, D. Das, M.N. Biswas, Adsorption of phenol fromaqueous solutions using activated carbons prepared from Tectona grandis sawdust by ZnCl2 activation, Chem. Eng. J. 115(1-2) (2005) 121-131. [50] Y.S. Ho, G. McKay, Pseudo-second order model for sorption processes, Process Biochem. 34(5) (1999) 451-465. [51] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40(9) (1918) 1361-1403. [52] H.M.F. Freundlich, Über die adsorption in lösungen, Z. Phys. Chem. 57A (1906) 385-470. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 108-117. |
[3] | Yifan Jiang, Bingqi Xie, Jisong Zhang. Highly reactive and reusable heterogeneous activated carbons-based palladium catalysts for Suzuki-Miyaura reaction [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 165-172. |
[4] | Lingli Chen, Yueting Shi, Sijun Xu, Junle Xiong, Fang Gao, Shengtao Zhang, Hongru Li. Enhanced adsorption of target branched compounds including antibiotic norfloxacin frameworks on mild steel surface for efficient protection: An experimental and molecular modelling study [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 212-227. |
[5] | Alexander Nti Kani, Evans Dovi, Aaron Albert Aryee, Runping Han, Zhaohui Li, Lingbo Qu. Mechanisms and reusability potentials of zirconium-polyaziridine-engineered tiger nut residue towards anionic pollutants [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 275-292. |
[6] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[7] | Hui Jiang, Zijian Zhao, Ning Yu, Yi Qin, Zhengwei Luo, Wenhua Geng, Jianliang Zhu. Synthesis, characterization, and performance comparison of boron using adsorbents based on N-methyl-D-glucosamine [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 16-31. |
[8] | Runze Chen, Yuran Chen, Xuemin Liang, Yapeng Kong, Yangyang Fan, Quan Liu, Zhenyu Yang, Feiying Tang, Johnny Muya Chabu, Maru Dessie Walle, Liqiang Wang. Oxidative exfoliation of spent cathode carbon: A two-in-one strategy for its decontamination and high-valued application [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 262-269. |
[9] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[10] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[11] | Chaobo Zhang, Xiaoyong Yang, Jian Dai, Wenxia Liu, Hang Yang, Zhishan Bai. Efficient extraction of phenol from wastewater by ionic micro-emulsion method: Anionic and cationic [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 137-145. |
[12] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[13] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[14] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[15] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 267
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2569
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||