Chin.J.Chem.Eng. ›› 2016, Vol. 24 ›› Issue (4): 543-552.DOI: 10.1016/j.cjche.2015.11.019
R. Geethanjali, S. Subhashini
Received:
2015-02-10
Revised:
2015-10-07
Online:
2016-05-27
Published:
2016-04-28
Contact:
R. Geethanjali
Supported by:
One of the authors, R. Geethanjali thanks Tamil Nadu State Council for Science and Technology (Tnscst/rfrs/vr/2013-14) for catalysing and financially supporting the research work under the RFRS scheme.
R. Geethanjali, S. Subhashini
通讯作者:
R. Geethanjali
基金资助:
One of the authors, R. Geethanjali thanks Tamil Nadu State Council for Science and Technology (Tnscst/rfrs/vr/2013-14) for catalysing and financially supporting the research work under the RFRS scheme.
R. Geethanjali, S. Subhashini. Synthesis of water-soluble acryl terpolymers and their anticorrosion properties on mild steel in 1 mol·L-1 HCl[J]. Chin.J.Chem.Eng., 2016, 24(4): 543-552.
R. Geethanjali, S. Subhashini. Synthesis of water-soluble acryl terpolymers and their anticorrosion properties on mild steel in 1 mol·L-1 HCl[J]. Chinese Journal of Chemical Engineering, 2016, 24(4): 543-552.
[1] D. Chamovska,M. Cvetkovska, T. Grchev, Corrosion inhibition of iron in hydrochloric acid by polyacrylamide, J. Serb. Chem. Soc. 72(2007) 687-698. [2] S. Umoren, Y. Li, F.Wang, Electrochemical study of corrosion inhibition and adsorption behaviour for pure iron by polyacrylamide in H2SO4: Synergistic effect of iodide ions, Corros. Sci. 52(2010) 1777-1786. [3] M. Srimathi, R. Rajalakshmi, S. Subhashini, Polyvinyl alcohol-sulphanilic acid water soluble composite as corrosion inhibitor formild steel in hydrochloric acid medium, Arab. J. Chem. 5(2012) 517-522. [4] M.V. Azghandi, A. Davoodi, G.A. Farzi, A. Kosari, Corrosion inhibitive evaluation of an environmentally friendly water-base acrylic terpolymer on mild steel in hydrochloric acid media, Metall. Mater. Trans. A 44(2013) 5493-5504. [5] C.B. Verma, M.A. Quraishi, E.E. Ebenso, Electrochemical and thermodynamic investigation of some soluble terpolymers as effective corrosion inhibitors for mild steel in 1 M hydrochloric acid solution, Int. J. Electrochem. Sci. 8(2013) 12894-12906. [6] R. Geethanjali, S. Subhashini, Synthesis of water soluble Polyvinyl alcohol-based Terpolymer and Evaluation of corrosion inhibition property on Mild steel in hydrochloric acid, Res. J. Rec. Sci. 3(2014) 170-176. [7] Y. Ren, Y. Luo, K. Zang, G. Zhu, X. Tan, Lignin terpolymer for corrosion inhibition of mild steel in 10% hydrochloric acid medium, Corros. Sci. 50(2008) 3147-3153. [8] M.V. Azghandi, A. Davoodi, G.A. Farzi, A. Kosari, Water-base acrylic terpolymer as a corrosion inhibitor for SAE1018 in simulated sour petroleum solution in stagnant and hydrodynamic conditions, Corros. Sci. 64(2012) 44-54. [9] N. Tudorachi, R. Lipsa, Copolymers based on poly(vinyl alcohol) and acrylamide, J. Optoelectron. Adv. Mater. 8(2006) 659-662. [10] E.B. Orler, D.J. Yontz, R.B. Moore, Sulfonation of syndiotactic polystyrene for model semicrystalline ionomer investigations, Macromolecules 26(1993) 5157-5160. [11] J.C. Yang, M.J. Jablonsky, J.W. Mays, NMR and FT-IR studies of sulfonated styrenebased homopolymers and copolymers, Polymer 43(19) (2002) 5125-5132. [12] B.L. Rivas, S.L. Nicolas, Poly(acrylic acid-co-vinylsulfonic acid): Synthesis, characterization, and properties as polychelatogen, J. Appl. Polym. Sci. 88(2003) 1698-1704. [13] M.D. Fernández, M.J. Fernández, P. Hoces, Poly(vinyl acetal)s containing electrondonor groups: Synthesis in homogeneous phase and their thermal properties, React. Funct. Polym. 68(2008) 39-56. [14] L. Calandrelli, G. De Rosa, M.E. Errico, Novel graft PLLA-based copolymers: Potential of their application to particle technology, J. Biomed. Mater. Res. 62(2001) 244-253. [15] K. Lewandowska, Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures, Thermochim. Acta 493(2009) 42-48. [16] L.Y. Zhong, B.Y. Gao, C.X. Li, Q.Y. Yue, B. Liu, Synthesis and characterization of hydrophobically associating cationic polyacrylamide, Chem. Eng. J. 161(2010) 27-33. [17] K.E. Lee, I. Khan, N. Morad, T.T. Teng, T. Poh, Thermal behavior and morphological properties of novel magnesium salt-polyacrylamide composite polymers, Polym. Compos. 1515-1522(2011). [18] Y.G. Devrim, Z. Rzaev, E. Pi?kin, Physically and chemically cross-linked poly{[(maleic anhydride)-alt-styrene]-co-(2-acrylamido-2-methyl-1-propanesulfonic acid)}/poly(ethylene glycol) proton-exchange membranes, Macromol. Chem. Phys. 208(2007) 175-187. [19] S. Cavus, Poly(methacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid) hydrogels: Investigation of pH- and temperature-dependent swelling characteristics and their characterization, J. Polym. Sci. B Polym. Phys. 48(2010) 2497-2508. [20] USERCOM, 1/2000 information for users of METTER TOLEDO thermal analysis systems (Google). [21] G. Groeninckx, M. Vanneste, V. Everaert, Polymer Blends Handbook, Springer Science & Business Media, 2003233(chapter 3). [22] M.F. Parveen, S.Umapathy, V. Dhanalakshmi, R. Anbarasan, Synthesis and characterization of nanosized Mg(OH)2 and its nanocomposite with poly(vinyl alcohol), NANO 4(2009) 147. [23] M.F. Parveen, S.Umapathy, V. Dhanalakshmi, R. Anbarasan, Synthesis and characterizations of nano-sized Ni(OH)2 and Ni(OH)2/poly(vinyl alcohol) nano composite, J. Mater. Sci. 44(2009) 5852. [24] X. Li, G. Mu, Tween-40 as corrosion inhibitor for cold rolled steel in sulphuric acid: Weight loss study, electrochemical characterization and AFM, Appl. Surf. Sci. (2005) 1254-1265. [25] A.M. Al-Mayouf, A.K. Al-Ameery, A.A. Al-Suhybani, Inhibition of type 304 stainless steel corrosion in 2 M sulfuric acid by some benzoazoles-time and temperature effects, Corrosion 57(2001) 614-620. [26] S.A. Umoren, E.E. Ebenso, Blends of polyvinyl pyrrolidone and polyacrylamide as corrosion inhibitors for aluminium in acidic medium, Indian J. Chem. Technol. 15(2008) 355-363. [27] A. Mansri, B. Bouras, B. Hammouti, I.Warad, A. Chetouani, Synergistic effect of AM-4VP-9 copolymer and iodide ion on corrosion inhibition of mild steel in 1 M H2SO4, Res. Chem. Intermed. 39(2013) 1753-1770. [28] S.K. Shukla, M.A. Quraishi, R. Prakash, A self-doped conducting polymer "polyanthranilic acid": an efficient corrosion inhibitor for mild steel in acidic solution, Corros. Sci. 50(2008) 2867-2872. [29] A. Popova, M. Christov, A. Zwetanova, Effect of the molecular structure on the inhibitor properties of azoles on mild steel corrosion in 1 M hydrochloric acid, Corros. Sci. 49(2007) 2131-2143. [30] M. Elayyachy, B. Hammouti, A. El Idrissi, New telechelic compounds as corrosion inhibitors for steel in 1 M HCl, Appl. Surf. Sci. 249(2005) 176-182. [31] M.A. Amin, K.F. Khaled, S.A. Fadl-allah, Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions-Experimental and theoretical studies, Corros. Sci. 52(2010) 140-151. [32] P. Herrasti, P. Oco, Polypyrrole layers for steel protection, Appl. Surf. Sci. 172(2001) 276-284. [33] V.V. Torres, V.A. Rayol, M. Magalhães, G.M. Viana, L.C.S. Aguiar, S.P. Machado, E.D. Elia, Study of thioureas derivatives synthesized from a green route as corrosion inhibitors for mild steel in HCl solution, Corros. Sci. 79(2014) 108-118. [34] T. Ghailane, R.A. Balkhmima, R. Ghailane, A. Souizi, R. Touir, M. EbnTouhami, K. Marakchi, N. Komiha, Experimental and theoretical studies for mild steel corrosion inhibition in 1 M HCl by two new benzothiazine derivatives, Corros. Sci. 76(2013) 317-324. [35] W. Chen, H.Q. Luo, N.B. Li, Inhibition effects of 2,5-dimercapto-1,3,4-thiadiazole on the corrosion of mild steel in sulphuric acid solution, Corros. Sci. 53(2011) 3356-3365. [36] E. Navvaro-Flores, Z. Chong, S. Omanovic, Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium, J. Mol. Catal. A Chem. 226(2005) 179-197. [37] K. Tebbji, H. Oudda, B. Hammouti, M. Benkaddour, M. El Kodadi, A. Ramdani, Inhibition effect of two organic compounds pyridine-pyrazole type in acidic corrosion of steel, Colloids Surf. A Physicochem. Eng. Asp. 259(2005) 143-149. [38] M.A. Amin, K.F. Khaled, Q. Mohsen, H.A. Arida, A study of the inhibition of iron corrosion in HCl solutions by some amino acids, Corros. Sci. 52(2010) 1684-1695. |
[1] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[2] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 17-29. |
[3] | Yongbo Liu, Zhihao Si, Cong Ren, Hanzhu Wu, Peng Zhan, Yuqing Peng, Peiyong Qin. Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 193-201. |
[4] | Yueting Shi, Junhai Zhao, Lingli Chen, Hongru Li, Shengtao Zhang, Fang Gao. Double open mouse-like terpyridine parts based amphiphilic ionic molecules displaying strengthened chemical adsorption for anticorrosion of copper in sulfuric acid solution [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 233-246. |
[5] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[6] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[7] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 316-322. |
[8] | Wenjuan Yan, Puhua Sun, Chen Luo, Xingfan Xia, Zhifei Liu, Yuming Zhao, Shuxia Zhang, Liang Sun, Feng Du. PtCo-based nanocatalyst for oxygen reduction reaction: Recent highlights on synthesis strategy and catalytic mechanism [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 101-123. |
[9] | Shutong Pang, Hualiang An, Xinqiang Zhao, Yanji Wang. Influence of Ca/P ratio on the catalytic performance of hydroxyapatite for decarboxylation of itaconic acid to methacrylic acid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 402-408. |
[10] | Fengfeng Gao, Jinhua Luo, Xuefeng Zhang, Xiaogang Hao, Guoqing Guan, Zhong Liu, Jun Li, Qinglong Luo. Electrodeposited iodide ions imprinted polypyrrole@bismuth oxyiodide film for an electrochemically switched renewable extractor towards iodide ions [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 161-169. |
[11] | Xingzheng Liu, Chuanbo Fu, Manting Wang, Jiexin Wang, Haikui Zou, Yuan Le, Jianfeng Chen. High-gravity technology intensified Knoevenagel condensation-Michael addition polymerization of poly (ethylene glycol)-poly (n-butyl cyanoacrylate) for blood-brain barrier delivery [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 94-103. |
[12] | Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai. Conjugated microporous polymer membranes for chemical separations [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 1-14. |
[13] | Jing Dou, Shuo Han, Saisai Lin, Zhikan Yao, Lian Hou, Lin Zhang. Highly permeable reverse osmosis membranes incorporated with hydrophilic polymers of intrinsic microporosity via interfacial polymerization [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 194-202. |
[14] | Haoqing Xu, Wenyan Feng, Menglong Sheng, Ye Yuan, Bo Wang, Jixiao Wang, Zhi Wang. Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 152-160. |
[15] | Jiankang Wang, Yajing Wang, Zhongping Yao, Zhaohua Jiang. Metal-organic framework-derived Ni doped Co3S4 hierarchical nanosheets as a monolithic electrocatalyst for highly efficient hydrogen evolution reaction in alkaline solution [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 380-388. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 119
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2013
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||