Chinese Journal of Chemical Engineering ›› 2022, Vol. 45 ›› Issue (5): 1-14.DOI: 10.1016/j.cjche.2022.01.027
Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai
Received:
2021-07-23
Revised:
2022-01-23
Online:
2022-06-22
Published:
2022-05-28
Contact:
Zhiping Lai,E-mail:Zhiping.lai@kaust.edu.sa
Supported by:
Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai
通讯作者:
Zhiping Lai,E-mail:Zhiping.lai@kaust.edu.sa
基金资助:
Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai. Conjugated microporous polymer membranes for chemical separations[J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 1-14.
Zongyao Zhou, Zhen Li, Lubna M. Rehman, Zhiping Lai. Conjugated microporous polymer membranes for chemical separations[J]. 中国化学工程学报, 2022, 45(5): 1-14.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.01.027
[1] R. Dashtpour, S.N. Al-Zubaidy, Energy efficient reverse osmosis desalination process, Int. J. Environ. Sci. Dev., 3 (2012) 339 [2] A. Asad, D. Sameoto, M. Sadrzadeh, Overview of membrane technology. Nanocomposite Membranes for Water and Gas Separation. Amsterdam:Elsevier, 2020:1-28 [3] D.F. Sanders, Z.P. Smith, R.L. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Energy-efficient polymeric gas separation membranes for a sustainable future:A review, Polymer 54 (18) (2013) 4729-4761 [4] Y.D. Cheng, Y.P. Ying, S. Japip, S.D. Jiang, T.S. Chung, S. Zhang, D. Zhao, Membrane technology:Advanced porous materials in mixed matrix membranes (adv. mater. 47/2018), Adv. Mater. 30 (47) (2018) 1870355 [5] Z.X. Kang, H.L. Guo, L.L. Fan, G. Yang, Y. Feng, D.F. Sun, S. Mintova, Scalable crystalline porous membranes:Current state and perspectives, Chem. Soc. Rev. 50 (3) (2021) 1913-1944 [6] J.C. Di, L. Li, Q.F. Wang, J.H. Yu, Porous membranes with special wettabilities:Designed fabrication and emerging application, CCS Chem. 3 (3) (2021) 2280-2297 [7] Z. Zhou, X. Li, D. Guo, D.B.". Shinde, D. Lu, L. Chen, X. Liu, L. Cao, A.M.". Aboalsaud, Y. Hu, Z. Lai, Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving">, Nat. Commun. 11"> (2020) 5323 [8] Z.Y. Zhou, D.W. Lu, X. Li, L.M. Rehman, A. Roy, Z.P. Lai, Fabrication of highly permeable polyamide membranes with large "leaf-like" surface nanostructures on inorganic supports for organic solvent nanofiltration, J. Membr. Sci. 601 (2020) 117932 [9] Q. Song, S. Cao, P. Zavala-Rivera, L.P. Lu, W. Li, Y. Ji, S.A. Al-Muhtaseb, A.K. Cheetham, E. Sivaniah, Photo-oxidative enhancement of polymeric molecular sieve membranes, Nat. Commun. 4 (2013) 1918 [10] A. Tavolaro, E. Drioli, Zeolite membranes, Adv. Mater. 11 (12) (1999) 975-996 [11] J. Caro, M. Noack, Zeolite membranes-Recent developments and progress, Microporous Mesoporous Mater. 115 (3) (2008) 215-233 [12] J.T. Duan, Y.C. Pan, F. Pacheco, E. Litwiller, Z.P. Lai, I. Pinnau, High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8, J. Membr. Sci. 476 (2015) 303-310 [13] Z. Lai, M. Tsapatsis, J.P. Nicolich, Siliceous ZSM-5 membranes by secondary growth ofb-oriented seed layers, Adv. Funct. Mater. 14 (7) (2004) 716-729 [14] X. Li, Y.X. Liu, J. Wang, J. Gascon, J.S. Li, B. van der Bruggen, Metal-organic frameworks based membranes for liquid separation, Chem. Soc. Rev. 46 (23) (2017) 7124-7144 [15] M.S. Denny Jr, J.C. Moreton, L. Benz, S.M. Cohen, Metal-organic frameworks for membrane-based separations, Nat. Rev. Mater. 1 (12) (2016) 16078 [16] A. Knebel, A. Bavykina, S.J. Datta, L. Sundermann, L. Garzon-Tovar, Y. Lebedev, S. Durini, R. Ahmad, S.M. Kozlov, G. Shterk, M. Karunakaran, I.D. Carja, D. Simic, I. Weilert, M. Klüppel, U. Giese, L. Cavallo, M. Rueping, M. Eddaoudi, J. Caro, J. Gascon, Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids, Nat. Mater. 19 (12) (2020) 1346-1353 [17] W.B. Li, Y.F. Zhang, C.Y. Zhang, Q. Meng, Z.H. Xu, P.C. Su, Q.B. Li, C. Shen, Z. Fan, L. Qin, G.L. Zhang, Transformation of metal-organic frameworks for molecular sieving membranes, Nat. Commun. 7 (2016) 11315 [18] S.S. Yuan, X. Li, J.Y. Zhu, G. Zhang, P. van Puyvelde, B. van der Bruggen, Covalent organic frameworks for membrane separation, Chem. Soc. Rev. 48 (10) (2019) 2665-2681 [19] Z.X. Kang, Y.W. Peng, Y.H. Qian, D.Q. Yuan, M.A. Addicoat, T. Heine, Z.G. Hu, L. Tee, Z.G. Guo, D. Zhao, Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation, Chem. Mater. 28 (5) (2016) 1277-1285 [20] S. Kandambeth, B.P. Biswal, H.D. Chaudhari, K.C. Rout, S. Kunjattu H, S. Mitra, S. Karak, A. Das, R. Mukherjee, U.K. Kharul, R. Banerjee, Selective molecular sieving in self-standing porous covalent-organic-framework membranes, Adv. Mater. 29 (2) (2017) 1603945 [21] H. Xu, S.S. Tao, D.L. Jiang, Proton conduction in crystalline and porous covalent organic frameworks, Nat. Mater. 15 (7) (2016) 722-726 [22] N. Rangnekar, N. Mittal, B. Elyassi, J. Caro, M. Tsapatsis, Zeolite membranes-a review and comparison with MOFs, Chem. Soc. Rev. 44 (20) (2015) 7128-7154 [23] S. Keskin, T. Van Heest, D. Sholl, Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem 3 (8) (2010) 879-891 [24] M. Shah, M.C. McCarthy, S. Sachdeva, A.K. Lee, H.K. Jeong, Current status of metal-organic framework membranes for gas separations:Promises and challenges, Ind. Eng. Chem. Res. 51 (5) (2012) 2179-2199 [25] J. Caro, M. Noack, Zeolite membranes-status and prospective. Advances in Nanoporous Materials. Amsterdam:Elsevier, 2010:1-96 [26] R. Baker, Future directions of membrane gas-separation technology, Membr. Technol. 2001 (138) (2001) 5-10 [27] R. Tan, A. Wang, R. Malpass-Evans, R. Williams, E.W. Zhao, T. Liu, C. Ye, X. Zhou, B.P. Darwich, Z. Fan, Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage, Nat. Mater., 19 (2020) 195-202 [28] X.Q. Cheng, Z.X. Wang, X. Jiang, T.X. Li, C.H. Lau, Z.H. Guo, J. Ma, L. Shao, Towards sustainable ultrafast molecular-separation membranes:From conventional polymers to emerging materials, Prog. Mater. Sci. 92 (2018) 258-283 [29] M.X. Zhang, X.C. Jing, S. Zhao, P.P. Shao, Y.Y. Zhang, S. Yuan, Y.S. Li, C. Gu, X.Q. Wang, Y.C. Ye, X. Feng, B. Wang, Electropolymerization of molecular-sieving polythiophene membranes for H2 separation, Angew. Chem. 131 (26) (2019) 8860-8864 [30] A.I. Cooper, Conjugated microporous polymers, Adv. Mater. 21 (12) (2009) 1291-1295 [31] Y.H. Xu, S.B. Jin, H. Xu, A. Nagai, D.L. Jiang, Conjugated microporous polymers:Design, synthesis and application, Chem. Soc. Rev. 42 (20) (2013) 8012-8031 [32] R. Dawson, A. Laybourn, R. Clowes, Y.Z. Khimyak, D.J. Adams, A.I. Cooper, Functionalized conjugated microporous polymers, Macromolecules 42 (22) (2009) 8809-8816 [33] C. Gu, Y.C. Chen, Z.B. Zhang, S.F. Xue, S.H. Sun, K. Zhang, C.M. Zhong, H.H. Zhang, Y.Y. Pan, Y. Lv, Y.Q. Yang, F.H. Li, S.B. Zhang, F. Huang, Y.G. Ma, Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics, Adv. Mater. 25 (25) (2013) 3443-3448 [34] C. Gu, N. Huang, Y.C. Chen, L.Q. Qin, H. Xu, S.T. Zhang, F.H. Li, Y.G. Ma, D.L. Jiang, Π-conjugated microporous polymer films:Designed synthesis, conducting properties, and photoenergy conversions, Angew. Chem. Int. Ed Engl. 54 (46) (2015) 13594-13598 [35] J.X. Jiang, F.B. Su, A. Trewin, C.D. Wood, N.L. Campbell, H.J. Niu, C. Dickinson, A.Y. Ganin, M.J. Rosseinsky, Y.Z. Khimyak, A.I. Cooper, Conjugated microporous poly(aryleneethynylene) networks, Angew. Chem. Int. Ed Engl. 46 (45) (2007) 8574-8578 [36] S.H. Luo, Z.T. Zeng, G.M. Zeng, Z.F. Liu, R. Xiao, P. Xu, H. Wang, D.L. Huang, Y. Liu, B.B. Shao, Q.H. Liang, D.B. Wang, Q.Y. He, L. Qin, Y.K. Fu, Recent advances in conjugated microporous polymers for photocatalysis:Designs, applications, and prospects, J. Mater. Chem. A 8 (14) (2020) 6434-6470 [37] Z.J. Wang, S. Ghasimi, K. Landfester, K.A.I. Zhang, Photocatalytic suzuki coupling reaction using conjugated microporous polymer with immobilized palladium nanoparticles under visible light, Chem. Mater. 27 (6) (2015) 1921-1924 [38] J. Byun, K.A.I. Zhang, Designing conjugated porous polymers for visible light-driven photocatalytic chemical transformations, Mater. Horiz. 7 (1) (2020) 15-31 [39] Y.L. Wong, J.M. Tobin, Z. Xu, F. Vilela, Conjugated porous polymers for photocatalytic applications, J. Mater. Chem. A 4 (48) (2016) 18677-18686 [40] Y.Z. Liao, Z.H. Cheng, W.W. Zuo, A. Thomas, C.F.J. Faul, Nitrogen-rich conjugated microporous polymers:Facile synthesis, efficient gas storage, and heterogeneous catalysis, ACS Appl. Mater. Interfaces 9 (44) (2017) 38390-38400 [41] A. Singh, S. Roy, C. Das, D. Samanta, T.K. Maji, Metallophthalocyanine-based redox active metal-organic conjugated microporous polymers for OER catalysis, Chem. Commun. 54 (35) (2018) 4465-4468 [42] Y.B. Zhou, Z.P. Zhan, Conjugated microporous polymers for heterogeneous catalysis, Chem. Asian J. 13 (1) (2018) 9-19 [43] W. Zhao, Y.Z. Jiao, J.J. Li, L.P. Wu, A.M. Xie, W. Dong, One-pot synthesis of conjugated microporous polymers loaded with superfine nano-palladium and their micropore-confinement effect on heterogeneously catalytic reduction, J. Catal. 378 (2019) 42-50 [44] S. Roy, A. Bandyopadhyay, M. Das, P.P. Ray, S.K. Pati, T.K. Maji, Redox-active and semi-conducting donor-acceptor conjugated microporous polymers as metal-free ORR catalysts, J. Mater. Chem. A 6 (14) (2018) 5587-5591 [45] Y.W. Zhang, Q.K. Sun, Z.P. Li, Y.F. Zhi, H. Li, Z.P. Li, H. Xia, X.M. Liu, Light-emitting conjugated microporous polymers based on an excited-state intramolecular proton transfer strategy and selective switch-off sensing of anions, Mater. Chem. Front. 4 (10) (2020) 3040-3046 [46] Q.J. Zhang, S. Yu, Q. Wang, Q. Xiao, Y. Yue, S.J. Ren, Fluorene-based conjugated microporous polymers:Preparation and chemical sensing application, Macromol. Rapid Commun. 38 (23) (2017) 1700445 [47] M.J. Wu, Y. Han, B. Wang, Y. Yuan, C.F. Xing, Y.L. Chen, S, N-heteroacene-based conjugated microporous polymers as fluorescent sensors and effective antimicrobial carriers, ACS Appl. Bio Mater. 1 (2) (2018) 473-479 [48] M.Y. Xu, T. Wang, P. Gao, L. Zhao, L. Zhou, D.B. Hua, Highly fluorescent conjugated microporous polymers for concurrent adsorption and detection of uranium, J. Mater. Chem. A 7 (18) (2019) 11214-11222 [49] S.J. Yang, X.S. Ding, B.H. Han, Conjugated microporous polymers with extended π-structures for organic vapor adsorption, Macromolecules 51 (3) (2018) 947-953 [50] Y.F. Xu, C. Zhang, P. Mu, N. Mao, X. Wang, Q. He, F. Wang, J.X. Jiang, Tetra-armed conjugated microporous polymers for gas adsorption and photocatalytic hydrogen evolution, Sci. China Chem. 60 (8) (2017) 1075-1083 [51] S. Yang, Y. Cao, T. Wang, S.Y. Cai, M.Y. Xu, W.H. Lu, D.B. Hua, Positively charged conjugated microporous polymers with antibiofouling activity for ultrafast and highly selective uranium extraction from seawater, Environ. Res. 183 (2020) 109214 [52] S. Wang, Y.C. Liu, Y. Yu, J.F. Du, Y.Z. Cui, X.W. Song, Z.Q. Liang, Conjugated microporous polymers based on biphenylene for CO2 adsorption and luminescence detection of nitroaromatic compounds, New J. Chem. 42 (12) (2018) 9482-9487 [53] K. Amin, N. Ashraf, L.J. Mao, C.F.J. Faul, Z.X. Wei, Conjugated microporous polymers for energy storage:Recent progress and challenges, Nano Energy 85 (2021) 105958 [54] Y. Kou, Y.H. Xu, Z.Q. Guo, D.L. Jiang, Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework, Angew. Chem. Int. Ed Engl. 50 (37) (2011) 8753-8757 [55] A.M. Khattak, H. Sin, Z.A. Ghazi, X. He, B. Liang, N.A. Khan, H.R. Alanagh, A. Iqbal, L.S. Li, Z.Y. Tang, Controllable fabrication of redox-active conjugated microporous polymers on reduced graphene oxide for high performance faradaic energy storage, J. Mater. Chem. A 6 (39) (2018) 18827-18832 [56] S. Bhunia, N. Dey, A. Pradhan, S. Bhattacharya, A conjugated microporous polymer based visual sensing platform for aminoglycoside antibiotics in water, Chem. Commun. (Camb) 54 (54) (2018) 7495-7498 [57] J. Hynek, J. Rathouský, J. Demel, K. Lang, Design of porphyrin-based conjugated microporous polymers with enhanced singlet oxygen productivity, RSC Adv. 6 (50) (2016) 44279-44287 [58] A. Rengaraj, P. Puthiaraj, Y. Haldorai, N.S. Heo, S.K. Hwang, Y.K. Han, S. Kwon, W.S. Ahn, Y.S. Huh, Porous covalent triazine polymer as a potential nanocargo for cancer therapy and imaging, ACS Appl. Mater. Interfaces 8 (14) (2016) 8947-8955 [59] N. Miyaura, K. Yamada, A. Suzuki, A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Lett. 20 (36) (1979) 3437-3440 [60] N. Miyaura, A. Suzuki, Cheminform abstract:Stereoselective synthesis of arylated (e)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst, Chemischer Informationsdienst 11 (7) (1980):866-867 [61] Q.Q. Liu, Z. Tang, M.D. Wu, Z.H. Zhou, Design, preparation and application of conjugated microporous polymers, Polym. Int. 63 (3) (2014) 381-392 [62] T. Ben, H. Ren, S.Q. Ma, D.P. Cao, J.H. Lan, X.F. Jing, W.C. Wang, J. Xu, F. Deng, J.M. Simmons, S.L. Qiu, G.S. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area, Angew. Chem. Int. Ed Engl. 48 (50) (2009) 9457-9460 [63] J.X. Jiang, A. Trewin, D.J. Adams, A.I. Cooper, Band gap engineering in fluorescent conjugated microporous polymers, Chem. Sci. 2 (9) (2011) 1777 [64] J. Schmidt, M. Werner, A. Thomas, Conjugated microporous polymer networks via Yamamoto polymerization, Macromolecules 42 (13) (2009) 4426-4429 [65] L.B. Sun, Z.Q. Liang, J.H. Yu, R.R. Xu, Luminescent microporous organic polymers containing the 1, 3, 5-tri(4-ethenylphenyl)benzene unit constructed by Heck coupling reaction, Polym. Chem. 4 (6) (2013) 1932 [66] L.B. Sun, Y.C. Zou, Z.Q. Liang, J.H. Yu, R.R. Xu, A one-pot synthetic strategy via tandem Suzuki-Heck reactions for the construction of luminescent microporous organic polymers, Polym. Chem. 5 (2) (2014) 471-478 [67] K.W. Wang, L.M. Yang, X. Wang, L.P. Guo, G. Cheng, C. Zhang, S.B. Jin, B.E. Tan, A. Cooper, Covalent triazine frameworks via a low-temperature polycondensation approach, Angew. Chem. Int. Ed. 56 (45) (2017) 14149-14153 [68] O. Buyukcakir, R. Yuksel, Y. Jiang, S.H. Lee, W.K. Seong, X. Chen, R.S. Ruoff, Synthesis of porous covalent quinazoline networks (CQNs) and their gas sorption properties, Angewandte Chemie Int. Ed. 58 (3) (2019) 872-876 [69] S.Y. Yu, J. Mahmood, H.J. Noh, J.M. Seo, S.M. Jung, S.H. Shin, Y.K. Im, I.Y. Jeon, J.B. Baek, Direct synthesis of a covalent triazine-based framework from aromatic amides, Angew. Chem. Int. Ed. 57 (28) (2018) 8438-8442 [70] J.K. Stille, E. Mainen, Ladder polyquinoxalines, J. Polym. Sci. B Polym. Lett. 4 (1) (1966) 39-41 [71] J.K. Stille, E.L. Mainen, Thermally stable ladder polyquinoxalines, Macromolecules 1 (1) (1968) 36-42 [72] P. Pandey, A.P. Katsoulidis, I. Eryazici, Y.Y. Wu, M.G. Kanatzidis, S.T. Nguyen, Imine-linked microporous polymer organic frameworks, Chem. Mater. 22 (17) (2010) 4974-4979 [73] M.G. Rabbani, A.K. Sekizkardes, O.M. El-Kadri, B.R. Kaafarani, H.M. El-Kaderi, Pyrene-directed growth of nanoporous benzimidazole-linked nanofibers and their application to selective CO2 capture and separation, J. Mater. Chem. 22 (48) (2012) 25409 [74] C. Xu, N. Hedin, Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption, J. Mater. Chem. A 1 (10) (2013) 3406 [75] B.P. Biswal, D. Becker, N. Chandrasekhar, J.S. Seenath, S. Paasch, S. Machill, F. Hennersdorf, E. Brunner, J.J. Weigand, R. Berger, X.L. Feng, Exploration of thiazolo[5, 4-d]thiazole linkages in conjugated porous organic polymers for chemoselective molecular sieving, Chem. Eur. J. 24 (42) (2018) 10868-10875 [76] X. Zhu, C.C. Tian, T. Jin, J.T. Wang, S.M. Mahurin, W.W. Mei, Y. Xiong, J. Hu, X.L. Feng, H.L. Liu, S. Dai, Thiazolothiazole-linked porous organic polymers, Chem. Commun. (Camb) 50 (95) (2014) 15055-15058 [77] M.G. Rabbani, H.M. El-Kaderi, Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage, Chem. Mater. 23 (7) (2011) 1650-1653 [78] Y.W. Zhang, A. Sigen, Y.C. Zou, X.L. Luo, Z.P. Li, H. Xia, X.M. Liu, Y. Mu, Gas uptake, molecular sensing and organocatalytic performances of a multifunctional carbazole-based conjugated microporous polymer, J. Mater. Chem. A 2 (33) (2014) 13422-13430 [79] B.Y. Li, Z.H. Guan, X.J. Yang, W.D. Wang, W. Wang, I. Hussain, K.P. Song, B.E. Tan, T. Li, Multifunctional microporous organic polymers, J. Mater. Chem. A 2 (30) (2014) 11930 [80] J.S.M. Lee, A.I. Cooper, Advances in conjugated microporous polymers, Chem. Rev. 120 (4) (2020) 2171-2214 [81] H.W. Ma, Y. Chen, X.B. Li, B. Li, Advanced applications and challenges of electropolymerized conjugated microporous polymer films, Adv. Funct. Mater. 31 (33) (2021) 2101861 [82] B. Liang, H. Wang, X. Shi, B. Shen, X. He, Z.A. Ghazi, N.A. Khan, H. Sin, A.M. Khattak, L. Li, Z. Tang, Microporous membranes comprising conjugated polymers with rigid backbones enable ultrafast organic-solvent nanofiltration">, Nat. Chem. 10"> (9">) (2018) 961">-967"> [83] P.P. Shao, R.X. Yao, G. Li, M.X. Zhang, S. Yuan, X.Q. Wang, Y.H. Zhu, X.M. Zhang, L. Zhang, X. Feng, B. Wang, Molecular-sieving membrane by partitioning the channels in ultrafiltration membrane by in situ polymerization, Angew. Chem. Int. Ed Engl. 59 (11) (2020) 4401-4405 [84] K. Li, J.Y. Zhu, D.C. Liu, Y.T. Zhang, B. van der Bruggen, Controllable and rapid synthesis of conjugated microporous polymer membranes via interfacial polymerization for ultrafast molecular separation, Chem. Mater. 33 (17) (2021) 7047-7056 [85] P. Lindemann, M. Tsotsalas, S. Shishatskiy, V. Abetz, P. Krolla-Sidenstein, C. Azucena, L. Monnereau, A. Beyer, A. Gölzhäuser, V. Mugnaini, H. Gliemann, S. Bräse, C. Wöll, Preparation of freestanding conjugated microporous polymer nanomembranes for gas separation, Chem. Mater. 26 (24) (2014) 7189-7193 [86] Y.N. Su, F. Wang, S.J. Wu, Y.K. Fan, W. Bai, S. Wang, H.X. Sun, Z.Q. Zhu, W.D. Liang, A. Li, Template-assisted preparation of conjugated microporous polymers membranes for selective separation, Sep. Purif. Technol. 259 (2021) 118203 [87] W. Liu, S.D. Jiang, Y.G. Yan, W.S. Wang, J. Li, K. Leng, S. Japip, J.T. Liu, H. Xu, Y.P. Liu, I.H. Park, Y. Bao, W. Yu, M.D. Guiver, S. Zhang, K.P. Loh, A solution-processable and ultra-permeable conjugated microporous thermoset for selective hydrogen separation, Nat. Commun. 11 (2020) 1633 [88] P.C. Liu, Z.W. Huang, X. He, J.J. Hou, W. Zheng, C.J. Liu, L.S. Li, Z.Y. Tang, Conjugated microporous polymer Janus membrane for dye rejection from water, J. Membr. Sci. 644 (2022) 120096 [89] Zhou Z, Guo D, Shinde DB, Cao L, Li Z, Li X, Lu D, Lai Z, Precise sub-angstrom ion separation using conjugated microporous polymer membranes, ACS Nano (2021) 2021Jun29 [90] Z.Y. Zhou, D.B. Shinde, D. Guo, L. Cao, R.A. Nuaimi, Y.T. Zhang, L.R. Enakonda, Z.P. Lai, Flexible ionic conjugated microporous polymer membranes for fast and selective ion transport, Adv. Funct. Mater. 32 (6) (2022) 2108672 [91] V. Senkovskyy, I. Senkovska, A. Kiriy, Surface-initiated synthesis of conjugated microporous polymers:Chain-growth kumada catalyst-transfer polycondensation at work, ACS Macro Lett. 1 (4) (2012) 494-498 [92] S. Edmondson, V.L. Osborne, W.T.S. Huck, Polymer brushes via surface-initiated polymerizations, Chem. Soc. Rev. 33 (1) (2004) 14 [93] E.E. Sheina, J.S. Liu, M.C. Iovu, D.W. Laird, R.D. McCullough, Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations, Macromolecules 37 (10) (2004) 3526-3528 [94] A. Yokoyama, R. Miyakoshi, T. Yokozawa, Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity, Macromolecules 37 (4) (2004) 1169-1171 [95] Y. Huang, Y. Zang, L. Xu, T.Y. Lei, J. Cui, Y.J. Xie, J.J. Wang, H.G. Jia, F.J. Miao, Synthesis of chiral conjugated microporous polymer composite membrane and improvements in permeability and selectivity during enantioselective permeation, Sep. Purif. Technol. 266 (2021) 118529 [96] J.J. Richardson, J.W. Cui, M. Björnmalm, J.A. Braunger, H. Ejima, F. Caruso, Innovation in layer-by-layer assembly, Chem. Rev. 116 (23) (2016) 14828-14867 [97] E.T. Seo, R.F. Nelson, J.M. Fritsch, L.S. Marcoux, D.W. Leedy, R.N. Adams, Anodic oxidation pathways of aromatic amines. electrochemical and electron paramagnetic resonance studies, J. Am. Chem. Soc. 88 (15) (1966) 3498-3503 [98] J.F. Ambrose, R.F. Nelson, Anodic oxidation pathways of carbazoles, J. Electrochem. Soc. 115 (11) (1968) 1159 [99] H.H. Zhang, Y.N. Zhang, C. Gu, Y.G. Ma, Electropolymerized conjugated microporous poly(zinc-porphyrin) films as potential electrode materials in supercapacitors, Adv. Energy Mater. 5 (10) (2015) 1402175 [100] S. Paleyanda Ponnappa, Electropolymerization studies of conjugated monomers and their biosensor applications. PhD Thesis. Queensland University of Technology, 2020. [101] Y. Lv, L. Yao, C. Gu, Y.X. Xu, Y.N. Zhang, Z.Q. Xie, L.L. Liu, Y.G. Ma, Cross-linked luminescent films via electropolymerization of multifunctional precursors for highly efficient electroluminescence, Polym. Chem. 4 (6) (2013) 2090 [102] R. Jean, Electrogenerated functional conjugated polymers as advanced electrode materials, J. Mater. Chem. 9 (9) (1999) 1875-1893 [103] J. Heinze, B.A. Frontana-Uribe, S. Ludwigs, Electrochemistry of conducting polymers:Persistent models and new concepts, Chem. Rev. 110 (8) (2010) 4724-4771 [104] K. Karon, M. Lapkowski, Carbazole electrochemistry:A short review, J. Solid State Electrochem. 19 (9) (2015) 2601-2610 [105] S. Karan, Z.W. Jiang, A.G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science 348 (6241) (2015) 1347-1351 [106] H. Mariën, I.F.J. Vankelecom, Transformation of cross-linked polyimide UF membranes into highly permeable SRNF membranes via solvent annealing, J. Membr. Sci. 541 (2017) 205-213 [107] M.F. Jimenez Solomon, Y. Bhole, A.G. Livingston, High flux membranes for organic solvent nanofiltration (OSN)-Interfacial polymerization with solvent activation, J. Membr. Sci. 423-424 (2012) 371-382 [108] Y. Li, Z. Guo, S. Li, B. van der Bruggen, Interfacially polymerized thin-film composite membranes for organic solvent nanofiltration, Adv. Mater. Interfaces 8 (3) (2021) 2001671 [109] Liu J, Hua D, Zhang Y, Japip S, Chung TS, Precise molecular sieving architectures with Janus pathways for both polar and nonpolar molecules, Adv. Mater. 30 (11) (2018) 2018Mar;30(11) [110] J. Micovic, K. Werth, P. Lutze, Hybrid separations combining distillation and organic solvent nanofiltration for separation of wide boiling mixtures, Chem. Eng. Res. Des. 92 (11) (2014) 2131-2147 [111] C.N. Dai, Z.G. Lei, X.M. Xi, J.Q. Zhu, B.H. Chen, Extractive distillation with a mixture of organic solvent and ionic liquid as entrainer, Ind. Eng. Chem. Res. 53 (40) (2014) 15786-15791 [112] K. Nakashima, F. Kubota, T. Maruyama, M. Goto, Feasibility of ionic liquids as alternative separation media for industrial solvent extraction processes, Ind. Eng. Chem. Res. 44 (12) (2005) 4368-4372 [113] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O'Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science 329 (5990) (2010) 424-428 [114] D.B. Shinde, G. Sheng, X. Li, M. Ostwal, A.H. Emwas, K.W. Huang, Z.P. Lai, Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration, J. Am. Chem. Soc. 140 (43) (2018) 14342-14349 [115] M. Peyravi, A. Rahimpour, M. Jahanshahi, Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration, J. Membr. Sci. 423-424 (2012) 225-237 [116] P.B. Kosaraju, K.K. Sirkar, Interfacially polymerized thin film composite membranes on microporous polypropylene supports for solvent-resistant nanofiltration, J. Membr. Sci. 321 (2) (2008) 155-161 [117] S. Sorribas, P. Gorgojo, C. Téllez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration, J. Am. Chem. Soc. 135 (40) (2013) 15201-15208 [118] X. He, H. Sin, B. Liang, Z.A. Ghazi, A.M. Khattak, N.A. Khan, H.R. Alanagh, L.S. Li, X.Q. Lu, Z.Y. Tang, Controlling the selectivity of conjugated microporous polymer membrane for efficient organic solvent nanofiltration, Adv. Funct. Mater. 29 (32) (2019) 1900134 [119] D. Guo, X. Li, W. Wahyudi, C.Y. Li, A.H. Emwas, M.N. Hedhili, Y.X. Li, Z.P. Lai, Electropolymerized conjugated microporous nanoskin regulating polysulfide and electrolyte for high-energy Li-S batteries, ACS Nano 14 (12) (2020) 17163-17173 [120] D. Guo, X. Li, F.W. Ming, Z.Y. Zhou, H.F. Liu, M.N. Hedhili, V. Tung, H.N. Alshareef, Y.X. Li, Z.P. Lai, Electropolymerization growth of an ultrathin, compact, conductive and microporous (UCCM) polycarbazole membrane for high energy Li-S batteries, Nano Energy 73 (2020) 104769 |
[1] | Pan Zhang, Guanghui Chen, Weiwen Wang, Guodong Zhang, Huaming Wang. Analysis of the nutation and precession of the vortex core and the influence of operating parameters in a cyclone separator [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 1-10. |
[2] | Dengke Pang, Zhihong Zhang, Yongquan Zhou, Zhenhai Fu, Quan Li, Yongming Zhang, Guangguo Wang, Zhuanfang Jing. The process and mechanism for cesium and rubidium extraction with saponified 4-tert-butyl-2-(α-methylbenzyl) phenol [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 31-39. |
[3] | Dong Liu, Shikai Ge, Zhenyu Wang, Mengting Li, Wei Zhuang, Pengpeng Yang, Yong Chen, Hanjie Ying. Identification of a sensor histidine kinase (BfcK) controlling biofilm formation in Clostridium acetobutylicum [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 84-93. |
[4] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[5] | Xiaomin Qiu, Yuanyuan Shen, Zhengkun Hou, Qi Wang, Zhaoyou Zhu, Yinglong Wang, Jingwei Yang, Jun Gao. Mechanism analysis of solvent selectivity and energy-saving optimization in vapor recompression-assisted extractive distillation for separation of binary azeotrope [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 271-279. |
[6] | Jianhua Feng, Sen Xiong, Li Ren, Yong Wang. Atomic layer deposition of TiO2 on carbon-nanotubes membrane for capacitive deionization removal of chromium from water [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 15-21. |
[7] | Ke Yang, Shan Zhong, Hairong Yue, Siyang Tang, Kui Ma, Changjun Liu, Kai Qiao, Bin Liang. Application of pulsed chemical vapor deposition on the SiO2-coated TiO2 production within a rotary reactor at room temperature [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 22-31. |
[8] | Song Hu, Jinlong Li, Qihua Wang, Weisheng Yang. Design and optimization of an integrated process for the purification of propylene oxide and the separation of propylene glycol by-product [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 111-120. |
[9] | Jun Pan, Xianli Xu, Zhaohui Wang, Shi-Peng Sun, Zhaoliang Cui, Lassaad Gzara, Iqbal Ahmed, Omar Bamaga, Mohammed Albeirutty, Enrico Drioli. Innovative hydrophobic/hydrophilic perfluoropolyether (PFPE)/polyvinylidene fluoride (PVDF) composite membrane for vacuum membrane distillation [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 248-257. |
[10] | Jihe Chen, Zhongan Jiang, Bin Yang, Yapeng Wang, Fabin Zeng. Effect of inlet area on the performance of a two-stage cyclone separator [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 8-19. |
[11] | Yingjie Zhou, Wenhui Zhang, Shengwei Yu, Haibo Jiang, Chunzhong Li. Patterned catalyst layer boosts the performance of proton exchange membrane fuel cells by optimizing water management [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 246-252. |
[12] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 284-291. |
[13] | Fei Tong, Jie Gong, Liang Yu, Ming Li, Lixiong Zhang. Transparent and anti-fogging AlPO4-5 films constructed by oblique oriented nano-flake crystals [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 332-340. |
[14] | Zhijie Shen, Jingchun Min. Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 497-506. |
[15] | Haoqing Xu, Wenyan Feng, Menglong Sheng, Ye Yuan, Bo Wang, Jixiao Wang, Zhi Wang. Covalent organic frameworks-incorporated thin film composite membranes prepared by interfacial polymerization for efficient CO2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 152-160. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||