[1] B. Azambre, M.J. Hudson, Growth of copper nanoparticles within VOx nanotubes[J], Mater. Lett. 57(20) (2003) 3005-3009. [2] W. Shan, C. Liu, H. Guo, L. Yang, X. Wang, Z. Feng, Synthesis of zero, one, and three dimensional CeO2 particles and CO oxidation over CuO/CeO2[J], Chin. J. Catal. 32(6-8) (2011) 1336-1341. [3] N.M. Mubarak, E.C. Abdullah, N.S. Jayakumar, J.N. Sahu, An overview onmethods for the production of carbon nanotubes[J], J. Ind. Eng. Chem. 20(12) (2014) 1186-1197. [4] Z. Tang, X. Yin, Y. Zhang, N. Zhang, Y. Xu, Inhibiting Pd nanoparticle aggregation and improving catalytic performance using one-dimensional CeO2 nanotubes as support[J], Chin. J. Catal. 34(6) (2013) 1123-1127. [5] F. Ji, C. Cao, H. Xu, Z. Yang, Mechanosynthesis of boron nitride nanotubes[J], Chin. J. Chem. Eng. 14(3) (2006) 389-393. [6] R. Rouhani, H.R. Aghabozorg, Asadabad M. Asadi, Synthesis and characterization of Re-, Mo-, and W-doped vanadium oxide nanotubes[J], Synth. React. Inorg. 41(8) (2011) 1018-1021. [7] J. Li, L.F. Zheng, K.F. Zhang, X.Q. Feng, Z.X. Su, J.T. Ma, Synthesis of Agmodified vanadium oxide nanotubes and their antibacterial properties[J], Mater. Res. Bull. 43(10) (2008) 2810-2817. [8] K.F. Zhang, D.J. Guo, X. Liu, J. Li, H.L. Li, Z.X. Su, Vanadium oxide nanotubes as the support of Pd catalysts for methanol oxidation in alkaline solution[J], J. Power Sources 162(2) (2006) 1077-1081. [9] G.T. Chandrappa, N. Steunou, S. Cassaignon, C. Bauvais, J. Livage, Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels[J], Catal. Today 78(1) (2003) 85-89. [10] A. Liu, M. Ichihara, I. Honma, H. Zhou, Vanadium-oxide nanotubes:Synthesis and template-related electrochemical properties[J], Electrochem. Commun. 9(7) (2007) 1766-1771. [11] X. Chen, X. Sun, Y. Li, Self-assembling vanadium oxide nanotubes by organic molecular templates[J], Inorg. Chem. 41(17) (2002) 4524-4530. [12] A.V. Grigorieva, E.A. Goodilin, A.V. Anikina, I.V. Kolesnik, Y.D. Tretyakov, Surfactants in the formation of vanadium oxide nanotubes[J], Mendeleev Commun. 18(2) (2008) 71-72. [13] S. Roy, M.S. Hegde, G. Madras, Catalysis for NOx abatement[J], Appl. Energy 86(11) (2009) 2283-2297. [14] S.M. Mousavi, D. Salari, A. Niaei, P.N. Panahi, S. Shafiei, A modelling study and optimization of catalytic reduction of NO over CeO2-MnOx (0.25)-Ba mixed oxide catalyst using design of experiments[J], Environ. Technol. 35(5) (2014) 581-589. [15] S. Saravanan, G. Nagarajan, R. Ramanujam, S. Sampath, Controlling NOx emission of crude rice bran oil blend for sustainable environment[J], Clean Soil Air Water 39(6) (2001) 515-521. [16] Panahi P. Nakhostin, D. Salari, A. Niaei, S.M. Mousavi, NO reduction over nanostructure M-Cu/ZSM-5(M:Cr, Mn, Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM[J], J. Ind. Eng. Chem. 19(6) (2013) 1793-1799. [17] J. Amanpour, D. Salari, A. Niaei, S.M. Mousavi, P.N. Panahi, Optimization of Cu/activated carbon catalyst in low temperature selective catalytic reduction of NO process using response surface methodology[J], J. Environ. Sci. Health A 48(8) (2013) 879-886. [18] S.M. Mousavi, A. Niaei, M.J. Illán Gómez, D. Salari, Panahi P. Nakhostin, V. Abaladejo-Fuentes, Characterization and activity of alkaline earth metals loaded CeO2-MOx (M=Mn, Fe) mixed oxides in catalytic reduction of NO[J], Mater. Chem. Phys. 143(3) (2014) 921-928. [19] Panahi P. Nakhostin, A. Niaei, H.H. Tseng, D. Salari, S.M. Mousavi, Modeling of catalyst composition-activity relationship of supported catalysts in NH3-NO-SCR process using artificial neural network[J], Neural Comput. & Applic. 26(7) (2015) 1515-1523. [20] S. Bai, S. Jiang, H. Li, Y. Guan, Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature[J], Chin. J. Chem. Eng. 23(3) (2015) 516-519. [21] A. Boyano, M.J. Lazaro, C. Cristiani, F.J. Maldonado-Hodar, P. Forzatti, R. Moliner, A comparative study of V2O5/AC and V2O5/Al2O3 catalysts for the selective catalytic reduction of NO by NH3[J], Chem. Eng. J. 149(1-3) (2009) 173-182. [22] G.J. Dong, Y.F. Zhang, Y. Zhao, Y. Bai, Effect of the pH value of precursor solution on the catalytic performance of V2O5-WO3/TiO2 in the low temperature NH3-SCR of NOx[J], J. Fuel Chem. Technol. 42(12) (2014) 1455-1463. [23] P. Forzatti, Present status and perspectives in de-NOx SCR catalysis[J], Appl. Catal. A Gen. 222(2001) 221-236. [24] Y. Gao, T. Luan, T. Lü, K. Cheng, H. Xu, Performance of V2O5-WO3-MoO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3[J], Chin. J. Chem. Eng. 21(1) (2013) 1-7. [25] F. Krumeich, H.J. Muhr,M. Niederberger, F. Bieri, B. Schnyder, R. Nesper, Morphology and topochemical reactions of novel vanadium oxide nanotubes[J], J. Am. Chem. Soc. 121(36) (1999) 8324-8331. [26] W. Chen, Synthesis of vanadium oxide nanotubes from V2O5 sols[J], Mater. Lett. 58(17-18) (2004) 2275-2278. [27] M. Niederberger, H.J. Muhr, F. Krumeich, F. Bieri, D. Gunther, R. Nesper, Low-cost synthesis of vanadium oxide nanotubes via two novel non-alkoxide routes[J], Chem. Mater. 12(7) (2000) 1995-2000. [28] Krishnan S. Pillai, F. Krumeich, H.J. Muhr,M. Niederberger, R. Nesper, The first oxide nanotubes with alternating inter-layer distances[J], Solid State Ionics 141-141(185-190) (2001). [29] L. Mai, W. Chen, Q. Xu, Q. Zhu, C. Han, J. Peng, Cost-saving synthesis of vanadium oxide nanotubes[J], Solid State Commun. 126(10) (2003) 541-543. [30] H.J. Chae, I.S. Nam, S.W. Ham, S.B. Hong, Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NOx by NH3[J], Appl. Catal. B Environ. 53(2004) 117-126. [31] W. Chen, L.Q.Mai, J.F. Peng, Q. Xu, Q.Y. Zhu, FTIR study of vanadium oxide nanotubes from lamellar structure[J], J. Mater. Sci. 39(2004) 2625-2627. [32] S.M.Mousavi, A. Niaei, D. Salari, P.N. Panahi,M. Samandari, Modelling and optimization of Mn/activate carbon nanocatalysts for NO reduction:comparison of RSM and ANN techniques[J], Environ. Technol. 34(11) (2013) 1377-1384. |