›› 2017, Vol. 25 ›› Issue (6): 689-697.DOI: 10.1016/j.cjche.2016.12.008
• Reviews • Next Articles
Guoqing Guan
Received:
2016-04-27
Revised:
2016-12-17
Online:
2017-08-02
Published:
2017-06-28
Guoqing Guan
通讯作者:
Guoqing Guan,Tel.:+81 17 762 7756,Fax:+81 17 735 5411,E-mail address:guan@hirosaki-u.ac.jp
Guoqing Guan. Clean coal technologies in Japan:A review[J]. , 2017, 25(6): 689-697.
Guoqing Guan. Clean coal technologies in Japan:A review[J]. , 2017, 25(6): 689-697.
[1] New Energy and Industrial Technology Development Organization (NEDO), Japan Clean Coal Technologies in Japan, 2006. [2] G. Guan, C. Fushimi, A. Tsutsumi, M. Ishizuka, S. Matsuda, H. Hatano, Y. Suzuki, High-density circulating fluidized bed gasifier for advanced IGCC/IGFC-advantages and challenges, Particuology 8(6) (2010) 602-606. [3] X. Tang, S. Snowden, B.C. McLellan, M. Höök, Clean coal use in China:Challenges and policy implications, Energy Policy 87(2015) 517-523. [4] R. Gupta, Advanced coal characterization:A review, Energy Fuel 21(2) (2007) 451-460. [5] T. Kuramochi, Review of energy and climate policy developments in Japan before and after Fukushima, Renew. Sust. Energ. Rev. 43(2015) 1320-1332. [6] K. Goto, K. Yogo, Higashii, A review of efficiency penalty in a coal-fired power plant with post-combustion CO2 capture, Appl. Energy 111(2013) 710-720. [7] Y. Yamauchi, K. Akiyama, Innovative zero-emission coal gasification power generation project, Energy Procedia 37(2013) 6579-6586. [8] M. Xu, R. Yan, C. Zheng, Y. Qiao, J. Han, C. Sheng, Status of trace element emission in a coal combustion process:A review, Fuel Process. Technol. 85(2-3) (2004) 215-237. [9] Q. Wang, R. Li, Journey to burning half of global coal:trajectory and drivers of China's coal use, Renew. Sust. Energ. Rev. 58(2016) 341-346. [10] M.F. Irfan, M.R. Usman, K. Kusakabe, Coal gasification in CO2 atmosphereabd its kinetics since 1948:A brief review, Energy 36(1) (2011) 12-40. [11] G. Scheffknecht, L. Al-Makhadmeh, U. Schnell, J. Maier, Oxy-fuel coal combustion-A review of the current state-of-the art, Int. J. Greenhouse Gas Control 5(S1) (2011) S16-S35. [12] Y. Ohtsuka, N. Tsubouchi, T. Kikuchi, H. Hashimoto, Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas, Powder Technol. 190(3) (2009) 340-347. [13] M. Fukuda, E. Saito, Y. Tanaka, T. Takahashi, J. Iwasaki, S. Takano, S. Izumi, Advanced USC technology development in Japan, Advances in Materials Technology for Fossil Power Plants, ASM International, Materials Park Ohio 2010, pp. 325-392. [14] S. Lin, Development of in-situ CO2 capture coal utilization technologies, Energy Procedia 37(2013) 99-106. [15] M. Iijima, T. Kamijo, T. Takashina, A. Oguchi, Fuel gas CO2 recovery utilization, disposal, and business development, Mitsubishi Heavy Industries Technical Review, 40(Extra No 1), 2003, pp. 1-5. [16] N. Nagasaki, Y. Takeda, T. Akiyama, T. Kumagai, Progress toward commercializing new technologies for coal use-oxygen-blown IGCC + CCS, Hitachi Rev. 59(3) (2010) 77-82. [17] T. Hashimoto, K. Sakamoto, Y. Kitagawa, Y. Hyakutake, N. Setani, Development of IGCC commercial plant with air-blown gasifier, Mitsubishi Heavy Ind. Tech. Rev. 46(2) (2009) 1-5. [18] T. Hashimoto, K. Sakamoto, H. Ishii, T. Fujii, Y. Koyama, Commercialization of clean coal technology with CO2 recovery, Mitsubishi Heavy Ind. Tech. Rev. 47(1) (2010) 9-14. [19] M. Ishida, D. Zheng, Akehata, Evaluation of a chemical-looping combustion power generation system by graphic exergy analysis, Energy 12(2) (1987) 147-154. [20] A. Lyngfelt, Chemical-looping combustion of solid fuels-status of development, Appl. Energy 113(2014) 1869-1873. [21] M. Kawabata, O. Kurata, N. Iki, C. Fushimi, A. Tsutsumi, Analysis of IGFC with exergy recuperation and carbon dioxide separation unit, Proceedings of ASME Turbo Expo 2012:Turbine Technical Conference and Exposition, Copenhagen, Denmark, 3, 2012, pp. 441-448. [22] D. Panthi, B. Choi, A. Tsutsumi, A novel type of micro-tubular SOFC for application in super IGFC system, Proceedings of International Symposium on Chemical Reaction Engineering. Maastricht, The Netherlands, 2012. [23] M. Taniguchi, Y. Yamikawa, T. Tatsumi, Yamamoto, Staged combustion properties for pulverized coals at high temperature, Combust. Flame 158(11) (2011) 2261-2271. [24] K. Ochi, K. Kiyama, H. Yoshizako, H. Okazaki, M. Taniguchi, Latest low-NOx combustion Technology for pulverized-coal-fired boilers, Hitachi Rev. 58(2009) 187-193. [25] P.S. Weitzel, Steam generator for advanced ultra-supercritical power plants 700 to 760C, ASME 2011 Power Conference, Denver, Colorado, USA 2011, pp. 1-10. [26] F. Masuyama, History of power plants and progress in heat resistant steels, ISIJ Int. 41(6) (2001) 612-625. [27] Y. Fukuda, Development of advanced ultra supercritical fossil power plants in Japan:Materials and high temperature corrosion properties, Mater. Sci. Forum 696(2011) 236-241. [28] M. Kai, S. Asano, New internally circulating fluidized-bed gasifier and its feasibility, Ebara Gihou 10(2007) 36-40. [29] K. Tsukamoto, N. Miyoshi, Industrial waste combustion boiler installed at paper mill ebara internally circulating fluidized bed boiler (ICFB) & Gasifier (ICFG), Jpn. TAPPI J. 57(5) (2003) 645-653. [30] I. Sugiyama, M. Izuka, T. Shikata, K. Oki, S. Koga, A. Nishiyama, Commercialization of the fluidized bed boiler in Japan, Hitachi Rev. 72(6) (1990) 85-94. [31] H. Liu, T. Kojima, Theoretical study of coal gasification in a 50 ton/day HYCOL entrained flow gasifier. I. Effects of coal properties and implications, Energy Fuel 18(4) (2004) 908-912. [32] H. Liu, T. Kojima, Theoretical study of coal gasification in a 50 ton/day HYCOL entrained flow gasifier. Ⅱ. Effects of operating conditions and comparison with pilot-scale experiments, Energy Fuel 18(4) (2004) 913-917. [33] A.G. Collot, Matching gasification technologies to coal properties, Int. J. Coal Geol. 65(3-4) (2006) 191-212. [34] E. Shoko, B. McLellan, A.L. Dicks, J.C. Diniz da Costa, Hydrogen from coal:production and utilisation technologies, Int. J. Coal Geol. 65(3-4) (2006) 213-222. [35] A. Giuffrida, M.C. Romano, G. Lozza, Thermodynamic analysis of air-blown gasification for IGCC applications, Appl. Energy 88(2011) 3949-3958. [36] A. Giuffrida, M.C. Romano, G. Lozza, Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up, Appl. Energy 110(2013) 44-45. [37] Y. Oki, J. Inumaru, S. Hara, M. Kobayashi, H. Watanabe, S. Umemoto, H. Makino, Development of oxy-fuel IGCC system with CO2 recirculation for CO2 capture, Energy Procedia 4(2011) 1066-1073. [38] A. Tsutsumi, Advanced IGCC/IGFC using exergy recuperation technology, CCT J. 11(2004) 17-22(in Japanese). [39] N. Iki, A. Tsutsumi, Y. Matsuzawa, F. Furutani, Parametric study of advanced IGCC, Proceedings of ASME Turbo Expo 2009:Power for Land, Sea and Air. Orlando, FL, USA, 2009(Paper GT2009-59984, 9 pp.). [40] G. Guan, C. Fushimi, A. Tsutsumi, Prediction of flow behavior of the riser in a novel high solids flux circulating fluidized beds for steam gasification of coal or biomass, Chem. Eng. J. 164(2010) 221-229. [41] C. Fushimi, G. Guan, Y. Nakamura, M. Ishizuka, A. Tsutsumi, S. Matsuda, H. Hatano, Y. Suzuki, Hydrodynamic characteristics of a large-scale triple-bed combined circulating fluidized bed, Powder Technol. 209(2011) 1-8. [42] G. Guan, C. Fushimi, M. Ishizuka, Y. Nakamura, A. Tsutsumi, S. Matsuda, Y. Suzuki, H. Hatano, Y. Cheng, E.W.C. Lim, C.H. Wang, Flow behaviors in the downer of a largescale triple-bed combined circulating fluidized bed system with high solids mass fluxes, Chem. Eng. Sci. 66(18) (2011) 4212-4220. [43] C. Fushimi, G. Guan, Y. Nakamura, M. Ishizuka, A. Tsutsumi, Y. Suzuki, Y. Cheng, E.W.C. Lim, C.H. Wang, Mixing behaviors of cold-hot particles in the downer of a triple-bed combined circulating fluidized bed, Powder Technol. 221(2012) 70-79. [44] Y. Cheng, D.Y.J. Lau, G. Guan, C. Fushimi, A. Tsutsumi, C.H. Wang, Experimental and numerical investigations on electrostatics generation and transport in the downer reactor of a triple-bed combined circulating fluidized bed, Ind. Eng. Chem. Res. 51(43) (2012) 14258-14267. [45] G. Guan, M. Ishizuka, C. Fushimi, A. Tsutsumi, Y. Suzuki, Downward gas-solids flow characterization in a high-density downer reactor, J. Chem. Eng. Jpn. 45(2012) 948-954. [46] Y. Yoshie, M. Ishizuka, G. Guan, C. Fushimi, A. Tsutusmi, A novel experimental technique to determine the heat transfer coefficient between the bed and particles in a downer, Adv. Powder Technol. 24(2) (2013) 487-494. [47] C. Fushimi, M. Ishizuka, G. Guan, Y. Suzuki, K. Norinaga, J.-I. Hayashi, A. Tsutsumi, Hydrodynamic behavior of binary mixture of solids in a triple-bed combined circulating fluidized bed with high mass flux, Adv. Powder Technol. 25(1) (2014) 379-388. [48] Y. Cheng, W. Zhang, G. Guan, C. Fushimi, A. Tsutsumi, C.H. Wang, Numerical studies of solid-solid mixing behaviors in a downer reactor for coal pyrolysis, Powder Technol. 253(2014) 722-732. [49] A. Tsutsumi, A novel integrated exergy recuperative coal gasification and SOFC system (S-IGFC) for hydrogen and power coproduction using triple-bed combined circulating fluidized bed, Proceedings of 2015 AIChE Annual Meeting, Salt Lake City, UT, 2015. [50] D. Panthi, B. Choi, A. Tsutsumi, Advanced power generation from coal based on an innovative design of solid oxide fuel cell, Proceedings of 2012 AIChE Spring Metting & 8th Global Congress on Process Safety, Houston, Texas, USA, 2012. [51] S. Lin, Y. Suzuki, H. Hatano, M. Harada, Developing an innovative method, HyPrRING, to produce hydrogen from hydrocarbons, Energy Convers. Manag. 43(9-12) (2002) 1283-1290. [52] S. Lin, M. Harada, Y. Suzuki, H. Hatano, Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING), Energy Convers. Manag. 46(6) (2005) 869-880. [53] S. Lin, T. Kiga, K. Nakayama, Suzuki, Coal power generation with in-situ CO2 capture-HyPr-RING method-effect of ash separation on plant efficiency, Energy Procedia 4(2011) 378-384. [54] C. Kunze, Spliethoff, Assessment of oxy-fuel, pre-and post-combustion-based carbon capture for future IGCC plants, Appl. Energy 94(2012) 109-116. [55] M. Wang, A. Lawal, P. Stephenson, J. Sidders, Ramshaw. Post-combustion CO2 capture with chemical absorption:A state-of-the art review, Chem. Eng. Res. Des. 89(9) (2011) 1609-1624. [56] F. Carrasco-Maldonado, R. Spörl, K. Fleiger, V. Hoenig, J. Maier, G. Scheffknecht, Oxyfuel combustion technology for cement production-state of the art research and technology development, Int. J. Greenhouse Gas Control 45(2016) 189-199. [57] D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies, Renew. Sust. Energ. Rev. 39(2014) 426-443. [58] Environmentally Harmonized Steelmaking Process Technology Development, COURSE 50, The Japan Iron and Steel Federation, Japan, 2011 http://www.jisf.or.jp/course50/index_en.html. [59] Y. Ohashi, T. Ogawa, S. Yamanaka, Carbon dioxide capture from flue gas of thermal power plants, Toshiba Rev. 63(9) (2008) 31-33. [60] T. Mimura, M. Hayashi, D. Hagiu, Development of CO2 chemical adsorption process-challenge at the lowest energy consumption in the world, Shinnitetsu Engineering Giho, 3, 2012, pp. 25-30. [61] S. Kasahara, E. Kamio, A.R. Shaikh, T. Matsuki, H. Matsuyama, Effect of the aminogroup densities of functionalized ionic liquids on the facilitated transport properties for CO2 separation, J. Membr. Sci. 503(2016) 148-157. [62] I. Taniguchi, S. Duan, S. Kazama, Y. Fujioka, Facile fabrication of a novel high performance CO2 separation membrane:Immobilization of poly(amidoamine) dendrimemers in poly(ethylene glycol) networks, J. Membr. Sci. 322(2) (2008) 277-280. [63] I. Taniguchi, T. Kai, S. Duan, S. Kazama, H. Jinnai, A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine)dendrimer-containing polymeric membranes, J. Membr. Sci. 475(2015) 175-183. [64] L. Fan, F. Li, S. Ramkumar, Utilization of chemical looping strategy in coal gasification processes, Particuology 6(2008) 131-142. [65] H. Yamagata, Carbon capture and storage activities in Japan, http://www.cslforum.org/publications/documents/Japan_CCS.pdf. [66] H.M. Homma, Carbon dioxide capture and storage (CCS) in Japan, http://www.xdos.co.jp/CCSJp.pdf. [67] C.Z. Li, Important of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-A review, Fuel 112(2013) 609-623. [68] J.-I. Hayashi, S. Hosokai, N. Sonoyama, Gasification of low-rank solid fuels with thermochemical energy recuperation for hydrogen production and power generation, Trans IChemE, Part B, Process Saf. Environ. Prot. 84(6B) (2006) 409-419. [69] J. Zhang, R. Wu, G. Zhang, C. Yao, Y. Zhang, Y. Wang, G. Xu, Recent studies on chemical engineering fundamentals for fuel pyrolysis and gasification in duel fluidized bed, Ind. Eng. Chem. Res. 52(19) (2013) 6283-6302. [70] T. Suda, M. Takafuji, M. Narukawa, Y. Matsuzawa, G. Xu, T. Fujimori, Gasification of lignite coal using twin circulating fluidized bed gasifier, J. Soc. Powder Technol. Jpn. 46(2009) 436-441. |
[1] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[2] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[3] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[4] | Jiangshan Qu, Jianbo Zhang, Huiquan Li, Shaopeng Li, Da Shi, Ruiqi Chang, Wenfen Wu, Ganyu Zhu, Chennian Yang, Chenye Wang. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 11-19. |
[5] | Xinyao Sun, Liu Zhao, Xu Hou, Hao Zhou, Huimin Qiao, Chenggong Song, Jing Huang, Enxian Yuan. Screening non-noble metal oxides to boost the low-temperature combustion of polyethylene waste in air [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 155-162. |
[6] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[7] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[8] | Zhong Ma, Guofu Liu, Hui Zhang, Yonggang Lu. Investigation of the redox performance of pyrite cinder calcined at different temperature in chemical looping combustion [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 98-105. |
[9] | Kangcheng Wang, Jie Zhang, Dexian Huang. Online temperature estimation of Shell coal gasification process based on extended Kalman filter [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 134-144. |
[10] | Junru Liu, Rui Hu, Xinlei Liu, Qunfeng Zhang, Guanghua Ye, Zhijun Sui, Xinggui Zhou. Modeling of propane dehydrogenation combined with chemical looping combustion of hydrogen in a fixed bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 165-173. |
[11] | Kuo Lin, Zhongjie Shen, Qinfeng Liang, Jianliang Xu, Haifeng Liu. The study of the effect of gas-phase fluctuation on slag flow and refractory brick corrosion in the slag tapping hole of an entrained-flow gasifier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 271-281. |
[12] | Baowen Wang, Zhongyuan Cai, Heyu Li, Yanchen Liang, Tao Jiang, Ning Ding, Haibo Zhao. Reaction characteristics investigation of CeO2-enhanced CaSO4 oxygen carrier with lignite [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 319-328. |
[13] | Jie Ju, Xianjian Duan, Bismark Sarkodie, Yanjie Hu, Hao Jiang, Chunzhong Li. Numerical simulation of flow field and residence time of nanoparticles in a 1000-ton industrial multi-jet combustion reactor [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 86-99. |
[14] | Xiuli Zhang, Zhengdong Gao, Yongzhuo Liu, Yuanhao Hou, Xiaoqing Sun, Qingjie Guo. Experimental and mechanistic study on chemical looping combustion of caking coal [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 89-96. |
[15] | Feng Liu, Jing Liu, Yu Li, Ruixue Fang. Theoretical study of reduction mechanism of Fe2O3 by H2 during chemical looping combustion [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 175-183. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 2789
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1995
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||