›› 2017, Vol. 25 ›› Issue (6): 698-711.DOI: 10.1016/j.cjche.2017.03.008
• Reviews • Previous Articles Next Articles
Basim O. Hasan1,2
Received:
2016-11-29
Revised:
2017-03-02
Online:
2017-08-02
Published:
2017-06-28
Basim O. Hasan1,2
通讯作者:
Basim O.Hasan,E-mail address:basimohasan13@gmail.com
Basim O. Hasan. Breakage of drops and bubbles in a stirred tank:A review of experimental studies[J]. , 2017, 25(6): 698-711.
Basim O. Hasan. Breakage of drops and bubbles in a stirred tank:A review of experimental studies[J]. , 2017, 25(6): 698-711.
[1] G. Zhou, S.M. Kresta, Correlation of mean drop size and minimum drop size with the turbulence energy dissipation and the flow in an agitated tank, Chem. Eng. Sci. 53(11) (1998) 2063-2079. [2] J.O. Hinze, Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes, AIChE 1(1955) 289-295. [3] T. Lemenand, P. Dupontb, D. Valle, H. Peerhossaini, Comparative efficiency of shear, elongation and turbulent droplet breakup mechanisms:Review and application, Chem. Eng. Res. Des. 91(2013) 2587-2600. [4] R. Andersson, B. Andersson, Modeling the breakup of fluid particles in turbulent flows, AIChE J. 52(6) (2006) 2031-2038. [5] E.L. Paul, V. Atiemo-Obeng, S.M. Kresta, Handbook of Industrial Mixing, Science and Practice, second ed.John Wiley and Sons, New Jersey, 2004. [6] S. Nachtigall, Z. Daniel, M. Kraume, Analysis of drop deformation dynamics in turbulent flow, Chin. J. Chem. Eng. 24(2) (2016) 264-277. [7] J. Solsvik, H. Jakobsen, Single drop break up experiments in stirred liquid-liquid tank, Chem. Eng. Sci. 131(2015) 219-234. [8] D. Nambiar, R. Kumar, K.S. Gandhi, Breakage and coalescence of drops in turbulent stirred dispersions, Sadhana 15(1990) 73-103. [9] A.N. Kolmogorov, Dokl. Akad. Nauk SSSR 66(1949) 825. [10] R.V. Calabrese, T.P.K. Chang, P.T. Dang, Drop breakup in turbulent stirred-tank contactors, part I:Effect of dispersed-phase viscosity, AIChE 32(4) (1986) 657-666. [11] R. Sanjuan-Galindo, E. Soto, R. Zenit, G. Ascanio, Viscous filament fragmentation in a turbulent flow inside a stirred tank, Chem. Eng. Commun. 202(2015) 1251-1260. [12] R. Andersson, B. Andersson, On the breakup of fluid particles in turbulent flows, AIChE J. 52(2006) 2020-2030. [13] Y. Renardy, V. Cristini, Effect of inertia on drop breakup under shear, Phys. Fluids 13(2001) 7-13. [14] Y. Renardy, Effect of startup conditions on drop breakup under shear with inertia, Int. J. Multiphase Flow 34(2002) 1185-1189. [15] Y. Liao, D. Lucas, A literature review of theoretical models for drop and bubble breakup in turbulent dispersions, Chem. Eng. Sci. 65(10) (2009) 2851-2864. [16] P. Rueger, R. Calabrese, Dispersion of water into oil in a rotor-stator mixer, part 1:Drop breakup in dilute systems, Chem. Eng. Res. Des. 9(1) (2013) 2122-2133. [17] S. Kumar, R. Kumar, K. Gandhi, Alternative mechanisms of drop breakage in stirred vessels, Chem. Eng. Sci. 46(10) (1991) 2483-2489. [18] S. Kumar, V. Ganvir, C. Satyanand, R. Kumars, K.S. Gandhi, Alternative mechanisms of drop breakup in stirred vessels, Chem. Eng. Sci. 53(18) (1998) 3269-3280. [19] M. Martin, F. Montes, M. Galan, Influence of impeller type on the bubble breakup process in stirred tanks, Ind. Eng. Chem. Res. 47(2008) 6251-6263. [20] K. Shimizu, K. Minekawa, K. T., T. Hirose, Y. Kawase, Drop breakage in stirred tanks with Newtonian and non-Newtonian fluid systems, Chem. Eng. J. 72(1999) 117-124. [21] V. Cristini, J. Lawzdziewicz, M. Loewenberg, L. Collins, Breakup in stochastic stokes flows:Sub-Kolmogorov drops in isotropic turbulence, J. Fluid Mech. 492(2003) 231-250. [22] M. Stamatoudist, L.L. Taviarides, Effect of continuous-phase viscosity on the drop sizes of liquid-liquid dispersions in agitated vessels, Ind. Eng. Chem. Process. Des. Dev. 24(1985) 1175-1181. [23] C.Y. Wang, R.V. Calabrese, Drop breakup in turbulent stirred-tank contactors part Ⅱ:Relative influence of viscosity and interfacial tension, AIChE 32(4) (1986) 667-676. [24] M. Nishikawa, F. Mori, F. Fujieda, Average drop size in a liquid-liquid phase mixing vessel, J. Chem. Eng. Jpn 20(1) (1987) 82-88. [25] A.N. Sathyagal, D. Ramkrishna, Droplet breakage in stirred dispersions:Breakage functions from experimental drop-size distributions, Chem. Eng. Sci. 51(9) (1996) 1377-1391. [26] M. Ruiz, P. Lermanda, R. Padilla, Drop size distribution in a batch mixer under breakage conditions, Hydrometallurgy 63(2002) 65-74. [27] M. Kraume, A. Gabler, K. Schulze, Influence of physical properties on drop size distributions of stirred liquid-liquid dispersions, Chem. Eng. Technol. 27(3) (2004) 330-334. [28] S. Maass, J. Rojahna, R. Hänschb, M. Kraume, Automated drop detection using image analysis for online particle size monitoring in multiphase systems, Comput. Chem. Eng. 45(2012) 27-37. [29] P. Patil, S. Kumar, Breakup of drops around the edges of Rushton turbine, Can. J. Chem. Eng. 88(2010) 912-918. [30] A. Bak, W. Podgórska, Drop breakage and coalescence in the toluene/water dispersions with dissolved surface active polymers PVA 88%and 98%, Chem. Eng. Res. Des. 91(2013) 2142-2155. [31] R. Escudie, A. Line, Experimental analysis of hydrodynamics in a radially agitated tank, AIChE 49(3) (2003) 585-603. [32] D.E. Leng, G.J. Quarderer, Drop dispersion in suspension polymerization, Chem. Eng. Commun. 14(1982) 177-201. [33] T. Takahashi, A.W. Nienow, Bubble size distributions in an aerated vessel agitated by a Rushton turbine, J. Chem. Eng. Jpn 26(1993) 536-542. [34] H. Sis, G. Kelbaliyev, S. Chander, Kinetics of drop breakage in stirred vessels under turbulent conditions, J. Dispers. Sci. Technol. 26(5) (2005) 565-573. [35] C.W. Angle, H.A. Hamza, Drop sizes during turbulent mixing of toluene-heavy oil fractions in water, environmental and energy engineering, AIChE 52(7) (2006) 2639-2650. [36] P. Patil, S. Kumar, Continued self-similar breakup of drops in viscous continuous phase in agitated vessels, Chem. Eng. Sci. 66(2011) 4932-4935. [37] A. Daub, M. Böhma, S. Delueg, M. Mühlmann, G. Schneider, J. Büchs, Maximum stable drop size measurements indicate turbulence attenuation by aeration in a 3 m3 aerated stirred tank, Biochem. Eng. J. 86(2014) 24-32. [38] K. Samaras, M. Kostoglou, T.D. Karapantsios, P. Mavros, Effect of adding glycerol and Tween 80 on gas holdup and bubble size distribution in an aerated stirred tank, Colloids Surf. A Physicochem. Eng. Asp. 441(2014) 815-824. [39] R. Sudiyo, B. Andersson, Bubble trapping and coalescence at the baffles in stirred tank reactors, AIChE 53(9) (2007) 2232-2239. [40] M. Konno, A. Aoki, S. Saito, Simulation model for breakup process in an agitated tank, J. Chem. Eng. Jpn 13(1) (1980) 67-73. [41] A. Giapos, C. Pachatouridis, M. Stamatoudis, Effect of the number of impeller blades on the drop sizes in agitated dispersions, Trans. IChemE A Chem. Eng. Res. Des. 83(A12) (2005) 1425-1430. [42] D. Sechremeli, A. Stampouli, M. Stamatoudis, Comparison of mean drop sizes and drop size distributions in agitated liquid-liquid dispersions produced by disk and open type impellers, Chem. Eng. J. 117(2006) 117-122. [43] S. Maass, F. Metz, T. Rehm, M. Kraume, Prediction of drop sizes for liquid-liquid systems in stirred slim reactors-Part I:Single stage impellers, Chem. Eng. J. 162(2010) 792-801. [44] M. Laakkonen, P. Moilanen, T. Miettinen, K. Saari, M. Honkanen, P. Saarenrinne, J. Aittamaa, Local bubble size distributions in agitated vessel:Comparison of three experimental techniques, Chem. Eng. Res. Des. 83(A1) (2005) 50-58. [45] M. Laakkonen, P. Moilanen, J. Aittamaa, Local bubble size distributions in agitated vessels, Chem. Eng. J. 106(2005) 133-143. [46] M. Konno, A. Aoki, S. Saito, Scale effect on breakup process in liquid-liquid agitated tanks, J. Chem. Eng. Jpn 16(4) (1983) 312-319. [47] H. Wright, D. Ramkrishna, Factors affecting coalescence frequency of droplets in a stirred liquid-liquid dispersion, AIChE 40(5) (May 1994) 767-776. [48] A. Lam, A. Sathyagal, S. Kumar, D. Ramkrishna, Maximum stable drop diameter in stirred dispersions, AIChE 42(6) (1996) 1547-1552. [49] H. Tokanai, M. Kuriyama, Sizes of maximum stable drops with different flow behavior in liquid-liquid agitation, J. Chem. Eng. Jpn 48(4) (2015) 257-261. [50] J. Solsvik, S. Tangen, H. Jakobsen, On the constitutive equations for fluid particles breakage, Rev. Chem. Eng. 29(2013) 241-356. [51] J. Solsvik, S. Maass, H. Jakobsen, Definition of the single drop breakup event, Ind. Eng. Chem. Res. 55(2016) 2872-2882. [52] S. Nachtigall, D. Zedel, S. Maass, A. Walle, M. Schäfer, M. Kraume, Determination of drop breakage mechanisms by experimental and numerical investigations of single drop breakages, 14th European Conference on Mixing Warszawa, 10-13 September, 2012. [53] R.P. Hesketh, A.W. Etchells, T.W. Fraser Russel, Experimental observations of bubble breakage in turbulent flow, Ind. Eng. Chem. Res. 30(1991) 835-841. [54] S. Maass, Experimental Analysis, Modeling and Simulation of drop Breakage in Agitated Turbulent Liquid/Liquid Dispersions, PhD thesis, Technical University of Berlin, Germany, 2011. [55] S. Maass, M. Kraume, Determination of breakage rates using single drop experiments, Chem. Eng. Sci. 70(2012) 146-164. [56] F. Risso, J. Fabre, Oscillations and breakup of a bubble immersed in a turbulent field, J. Fluid Mech. 372(1998) 323-355. [57] S. Galinat, O. Masbernat, P. Guiraud, C. Dalmazzone, C. Noïk, Drop break-up in turbulent pipe flow downstream of a restriction, Chem. Eng. Sci. 60(2005) 6511-6528. [58] J. Solsvik, H.A. Jakobsen, Single air bubble breakup experiments in stirred water tank, Int. J. Chem. React. Eng. 13(2015) 477-491. [59] V. Hancil, V. Rod, Break-up of a drop in a stirred tank, Chem. Eng. Process. 23(1988) 189-193. [60] M. Kuriyama, M. Ono, H. Tokanai, H. Kono, The number of daughter drops formed per breakup of a highly viscous mother drop in turbulent flow, J. Chem. Eng. Jpn 28(4) (1995) 477-479. [61] S. Maass, A. Gabler, A. Zaccone, A. Paschedag, M. Kraume, Experimental investigations and modeling of breakage phenomena in stirred liquid/liquid systems, Chem. Eng. Res. Des. Trans. IChemE A 85(A5) (2007) 703-709. [62] S. Maass, S. Buscher, S. Hermann, M. Kraume, Analysis of particle strain in stirred bioreactors by drop breakage investigations, Biotechnol. J. 6(2011) 1-4. [63] N. Kolev, Multiphase flow dynamics, mechanical and thermal interactions, Springer, Berlin, 2002. [64] M. Stork, Model-based Optimization of the Procedure of Emulsification, PhD thesis, Technical University Delft, Delft, Netherlands, 2005. [65] S. Hermann, S. Maass, D. Zedel, A. Walle, M. Schäfer, M. Kraume, Experimental and numerical investigations of drop breakage mechanism, 1st International Symposium on Multiscale Multiphase Process Engineering (MMPE) 4-7 October, 2011, Kanazawa, Japan, 2011. [66] J.F. Walter, H.W. Blanch, Bubble breakup in gas-liquid bioreactors:Breakup in turbulent flows, Chem. Eng. J. 32(1986) B7-B17. [67] R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops, and Particles, Academic Press Inc., United State, 1978. [68] R. Roudsari, G. Turcotte, R. Dhib, F. Ein-Mozaffari, CFD modeling of the mixing of water in oil emulsions, Comput. Chem. Eng. 45(2012) 124-136. [69] I. Leifer, G. Leeuw, L.H. Cohen, Optical measurement of bubbles:System design and application, J. Atmos. Ocean. Technol. 20(2003) 1317-1332. [70] T.B. Suneetha, P.T. Raghuram, Bubble size measurements and error analysis in a gas liquid ejector, Indian J. Chem. Eng. 19(2012) 442-446. [71] M.M. Clark, Drop breakup in a turbulent flow-Ⅱ:Experiment in a small mixing vessel, Chem. Eng. Sci. 43(3) (1988) 681-692. [72] S.S. Alves, C.I. Maia, J.M.T. Vasconcelos, A.J. Serralheiro, Bubble size in aerated stirred tanks, Chem. Eng. J. 3990(2002) 1-9. [73] M.C. Ruiz, P. Lermanda, R. Padilla, Drop size distribution in a batch mixer under breakage conditions, Hydrometallurgy 63(2002) 65-74. [74] A. Gäbler, M. Wegener, A.R. Paschedag, M. Kraume, The effect of pH on experimental and simulation results of transient drop size distributions in stirred liquid-liquid dispersions, Chem. Eng. Sci. 61(2006) 3018-3024. [75] S. Maass, P. Niklas, M. Kraume, Influence of the dispersed phase fraction on experimental and predicted drop size distributions in breakage dominated stirred systems, Chem. Eng. Sci. 76(2012) 140-153. [76] A. Daub, M. Böhm, S. Delueg, J. Büchs, Measurement of maximum stable drop size in aerated dilute liquid-liquid dispers ions in stirred tanks, Chem. Eng. Sci. 104(2013) 147-155. [77] A. Zaccone, A. Gäbler, S. Maass, D. Marchisio, M. Kraume, Drop breakage in liquid-liquid stirred dispersions:Modeling of single drop breakage, Chem. Eng. Sci. 62(2007) 6297-6307. [78] T. Kekesi, G. Amberg, L. Wittberg, Drop deformation and breakup, Int. J. Multiphase Flow 66(2014) 1-10. |
[1] | Anjun Liu, Jie Chen, Meng Guo, Chengmin Chen, Meihong Yang, Chao Yang. The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 51-60. |
[2] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[3] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 179-194. |
[4] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[5] | Arnop Dutta, Md. Tuhinur R. Joy, Sk. Md. Ali Ahsan, Mansour K. Gatasheh, Dileep Kumar, Malik Abdul Rub, Md. Anamul Hoque, Mohammad Majibur Rahman, Nasrul Hoda, D.M. Shafiqul Islam. Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 280-289. |
[6] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[7] | Yingxiang Ni, Can Yuan, Shilong Li, Jian Lu, Lei Yan, Wei Gu, Weihong Xing, Wenheng Jing. Temperature-induced hydrophobicity transition of MXene membrane for directly preparing W/O emulsions [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 59-62. |
[8] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
[9] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[10] | Yilin Song, Yize Zhang, Hao Zhou. Experimental study on the desulfurization and evaporation characteristics of Ca(OH)2 droplets [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 127-135. |
[11] | Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 248-256. |
[12] | Yifeng Chen, Hang Yu, Jingjing Chen, Xiaohua Lu, Xiaoyan Ji. Viscous behavior of 1-hexyl-methylimidazolium bis(trifluoromethylsulfonyl)imide/titanium dioxide/polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 280-287. |
[13] | Xiaodong Yang, Na Yang, Ziqiang Gong, Feifei Peng, Bin Jiang, Yongli Sun, Luhong Zhang. The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 296-305. |
[14] | Chao Zhang, Youzhi Liu, Weizhou Jiao, Hongyan Shen, Xigang Yuan, Shengkun Jia. An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 83-88. |
[15] | Xibao Zhang, Zhenghong Luo. Bubble size modeling approach for the simulation of bubble columns [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 194-200. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 443
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 2276
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||