[1] X. Han, S.H. Yang, M. Schröder, Porous metal–organic frameworks as emerging sorbents for clean air, Nat. Rev. Chem. 3 (2) (2019) 108–118. [2] L.X. Cai, S.C. Li, D.N. Yan, L.P. Zhou, F. Guo, Q.F. Sun, Water-soluble redox-active cage hosting polyoxometalates for selective desulfurization catalysis, J. Am. Chem. Soc. 140 (14) (2018) 4869–4876. [3] M. Savage, Y.Q. Cheng, T.L. Easun, J.E. Eyley, S.P. Argent, M.R. Warren, W. Lewis, C. Murray, C.C. Tang, M.D. Frogley, G. Cinque, J.L. Sun, S. Rudić, R.T. Murden, M.J. Benham, A.N. Fitch, A.J. Blake, A.J. Ramirez-Cuesta, S.H. Yang, M. Schröder, Selective adsorption of sulfur dioxide in a robust metal–organic framework material, Adv. Mater. 28 (39) (2016) 8705–8711. [4] R.T. Yang, A.J. Hernández-Maldonado, F.H. Yang, Desulfurization of transportation fuels with zeolites under ambient conditions, Science 301 (5629) (2003) 79–81. [5] X. Suo, Y. Yu, S.H. Qian, L. Zhou, X.L. Cui, H.B. Xing, Tailoring the pore size and chemistry of ionic ultramicroporous polymers for trace sulfur dioxide capture with high capacity and selectivity, Angew. Chem. Int. Ed. 60 (13) (2021) 6986–6991. [6] F.Q. Chen, D. Lai, L.D. Guo, J. Wang, P.X. Zhang, K.Y. Wu, Z.G. Zhang, Q.W. Yang, Y.W. Yang, B.L. Chen, Q.L. Ren, Z.B. Bao, Deep desulfurization with record SO2 adsorption on the metal–organic frameworks, J. Am. Chem. Soc. 143 (24) (2021) 9040–9047. [7] M.R. Tchalala, P.M. Bhatt, K.N. Chappanda, S.R. Tavares, K. Adil, Y. Belmabkhout, A. Shkurenko, A. Cadiau, N. Heymans, G. de Weireld, G. Maurin, K.N. Salama, M. Eddaoudi, Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air, Nat. Commun. 10 (1) (2019) 1328. [8] X.L. Cui, Q.W. Yang, L.F. Yang, R. Krishna, Z.G. Zhang, Z.B. Bao, H. Wu, Q.L. Ren, W. Zhou, B.L. Chen, H.B. Xing, Ultrahigh and selective SO2 uptake in inorganic anion-pillared hybrid porous materials, Adv. Mater. 29 (2017) 1606929. [9] G.L. Smith, J.E. Eyley, X. Han, X.R. Zhang, J.N. Li, N.M. Jacques, H.G.W. Godfrey, S.P. Argent, L.J. McCormick McPherson, S.J. Teat, Y.Q. Cheng, M.D. Frogley, G. Cinque, S.J. Day, C.C. Tang, T.L. Easun, S. Rudić, A.J. Ramirez-Cuesta, S.H. Yang, M. Schröder, Reversible coordinative binding and separation of sulfur dioxide in a robust metal–organic framework with open copper sites, Nat. Mater. 18 (12) (2019) 1358–1365. [10] K.A. Cychosz, A.G. Wong-Foy, A.J. Matzger, Enabling cleaner fuels: Desulfurization by adsorption to microporous coordination polymers, J. Am. Chem. Soc. 131 (40) (2009) 14538–14543. [11] A.J. Hernández-Maldonado, R.T. Yang, Desulfurization of transportation fuels by adsorption, Catal. Rev. 46 (2) (2004) 111–150. [12] Y.N. Prajapati, N. Verma, Adsorptive desulfurization of diesel oil using nickel nanoparticle-doped activated carbon beads with/without carbon nanofibers: Effects of adsorbate size and adsorbent texture, Fuel 189 (2017) 186–194. [13] Z. Song, C.Y. Zhang, Z.W. Qi, T. Zhou, K. Sundmacher, Computer-aided design of ionic liquids as solvents for extractive desulfurization, AIChE J. 64 (3) (2018) 1013–1025. [14] V. Chandra Srivastava, An evaluation of desulfurization technologies for sulfur removal from liquid fuels, RSC Adv. 2 (3) (2012) 759–783. [15] W.J. Jiang, Y. Yin, X.Q. Liu, X.Q. Yin, Y.Q. Shi, L.B. Sun, Fabrication of supported cuprous sites at low temperatures: An efficient, controllable strategy using vapor-induced reduction, J. Am. Chem. Soc. 135 (22) (2013) 8137–8140. [16] P. Tan, D.M. Xue, J. Zhu, Y. Jiang, Q.X. He, Z.F. Hou, X.Q. Liu, L.B. Sun, Hierarchical N-doped carbons from designed N-rich polymer: Adsorbents with a record-high capacity for desulfurization, AIChE J. 64 (11) (2018) 3786–3793. [17] N.A. Khan, B.N. Bhadra, S.H. Jhung, Heteropoly acid-loaded ionic liquid@metal–organic frameworks: Effective and reusable adsorbents for the desulfurization of a liquid model fuel, Chem. Eng. J. 334 (2018) 2215–2221. [18] P. Tan, Y. Jiang, L.B. Sun, X.Q. Liu, K. AlBahily, U. Ravon, A. Vinu, Design and fabrication of nanoporous adsorbents for the removal of aromatic sulfur compounds, J. Mater. Chem. A 6 (47) (2018) 23978–24012. [19] B. van de Voorde, M. Boulhout, F. Vermoortele, P. Horcajada, D. Cunha, J.S. Lee, J.S. Chang, E. Gibson, M. Daturi, J.C. Lavalley, A. Vimont, I. Beurroies, D.E. de Vos, N/S-heterocyclic contaminant removal from fuels by the mesoporous metal–organic framework MIL-100: The role of the metal ion, J. Am. Chem. Soc. 135 (26) (2013) 9849–9856. [20] F. Subhan, S. Aslam, Z.F. Yan, L. Zhen, A. Ahmad, M. Naeem, J.B. Zeng, R. Ullah, U.J. Etim, Facile functionalization of 3-D ordered KIT-6 with cuprous oxide for deep desulfurization, Chem. Eng. J. 330 (2017) 372–382. [21] Y.X. Li, J.X. Shen, S.S. Peng, J.K. Zhang, J. Wu, X.Q. Liu, L.B. Sun, Enhancing oxidation resistance of Cu(I) by tailoring microenvironment in zeolites for efficient adsorptive desulfurization, Nat. Commun. 11 (2020) 3206. [22] F. Subhan, S. Aslam, Z.F. Yan, L. Zhen, M. Ikram, R. Ullah, U.J. Etim, A. Ahmad, Ammonia assisted functionalization of cuprous oxide within confined spaces of SBA-15 for adsorptive desulfurization, Chem. Eng. J. 339 (2018) 557–565. [23] Y.X. Li, M.M. Jin, S. Shi, S.C. Qi, X.Q. Liu, L.B. Sun, Adjusting accommodation microenvironment for Cu+ to enhance oxidation inhibition for thiophene capture, AIChE J. 67 (10) (2021) e17368. [24] G. Turnes Palomino, P. Fisicaro, S. Bordiga, A. Zecchina, E. Giamello, C. Lamberti, Oxidation states of copper ions in ZSM-5 zeolites. A multitechnique investigation, J. Phys. Chem. B 104 (17) (2000) 4064–4073. [25] L. Han, J. Zhang, Y. Mao, W. Zhou, W. Xu, Y.Y. Sun, Facile and green synthesis of MIL-53(Cr) and its excellent adsorptive desulfurization performance, Ind. Eng. Chem. Res. 58 (34) (2019) 15489–15496. [26] A. Aijaz, Q. Xu, Catalysis with metal nanoparticles immobilized within the pores of metal–organic frameworks, J. Phys. Chem. Lett. 5 (8) (2014) 1400–1411. [27] Q.L. Zhu, J. Li, Q. Xu, Immobilizing metal nanoparticles to metal–organic frameworks with size and location control for optimizing catalytic performance, J. Am. Chem. Soc. 135 (28) (2013) 10210–10213. [28] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal–organic frameworks, Science 341 (6149) (2013) 974–987. [29] L.B. Li, R.B. Lin, R. Krishna, H. Li, S.C. Xiang, H. Wu, J.P. Li, W. Zhou, B.L. Chen, Ethane/ethylene separation in a metal–organic framework with iron-peroxo sites, Science 362 (6413) (2018) 443–446. [30] K. Pirzadeh, A.A. Ghoreyshi, S. Rohani, M. Rahimnejad, Strong influence of amine grafting on MIL-101 (Cr) metal–organic framework with exceptional CO2/N2 selectivity, Ind. Eng. Chem. Res. 59 (1) (2020) 366–378. [31] S. Kitagawa, R. Kitaura, S.I. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed. 43 (18) (2004) 2334–2375. [32] J.D. Evans, C.J. Sumby, C.J. Doonan, Post-synthetic metalation of metal–organic frameworks, Chem. Soc. Rev. 43 (16) (2014) 5933–5951. [33] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R.V. Belosludov, T.C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita, Highly controlled acetylene accommodation in a metal–organic microporous material, Nature 436 (7048) (2005) 238–241. [34] G. Férey, Hybrid porous solids: Past, present, future, Chem. Soc. Rev. 37 (1) (2008) 191–214. [35] Y.X. Li, Y.N. Ji, S.X. Mao, M.M. Jin, X.Q. Liu, L.B. Sun, Construction of a superhydrophobic microenvironment via polystyrene coating: An unexpected way to stabilize CuI against oxidation, Inorg. Chem. Front. 8 (24) (2021) 5169–5177. [36] S.Y. Kim, T.U. Yoon, J.H. Kang, A.R. Kim, T.H. Kim, S.I. Kim, W. Park, K.C. Kim, Y.S. Bae, Observation of olefin/paraffin selectivity in azo compound and its application into a metal–organic framework, ACS Appl. Mater. Interfaces 10 (32) (2018) 27521–27530. [37] J.Y. Zhang, N. Zhang, L.J. Zhang, Y.Z. Fang, W. Deng, M. Yu, Z.Q. Wang, L.N. Li, X.Y. Liu, J.Y. Li, Adsorption of uranyl ions on amine-functionalization of MIL-101(Cr) nanoparticles by a facile coordination-based post-synthetic strategy and X-ray absorption spectroscopy studies, Sci. Rep. 5 (2015) 13514. [38] X.B. Luo, L. Ding, J.M. Luo, Adsorptive removal of Pb(II) ions from aqueous samples with amino-functionalization of metal–organic frameworks MIL-101(Cr), J. Chem. Eng. Data 60 (6) (2015) 1732–1743. [39] K.J. Miao, Q.X. He, Y.X. Li, X.Q. Liu, Y. Jiang, C. Gu, L.B. Sun, Fabrication of Cu(I)-functionalized MIL-101(Cr) for adsorptive desulfurization: Low-temperature controllable conversion of Cu(II) via vapor-induced reduction, Inorg. Chem. 58 (16) (2019) 11085–11090. [40] J.X. Qin, P. Tan, Y. Jiang, X.Q. Liu, Q.X. He, L.B. Sun, Functionalization of metal–organic frameworks with cuprous sites using vapor-induced selective reduction: Efficient adsorbents for deep desulfurization, Green Chem. 18 (11) (2016) 3210–3215. [41] S.C. Qi, X.Y. Qian, Q.X. He, K.J. Miao, Y. Jiang, P. Tan, X.Q. Liu, L.B. Sun, Generation of hierarchical porosity in metal–organic frameworks by the modulation of cation valence, Angew. Chem. Int. Ed. 58 (30) (2019) 10104–10109. [42] B. Li, J.G. Ma, P. Cheng, Silica-protection-assisted encapsulation of Cu2O nanocubes into a metal–organic framework (ZIF-8) to provide a composite catalyst, Angew. Chem. Int. Ed. 57 (23) (2018) 6834–6837. [43] Y.X. Li, Y.N. Ji, M.M. Jin, S.C. Qi, S.S. Li, D.M. Xue, M.B. Yue, X.Q. Liu, L.B. Sun, Controlled construction of Cu(I) sites within confined spaces via host–guest redox: Highly efficient adsorbents for selective CO adsorption, ACS Appl. Mater. Interfaces 10 (46) (2018) 40044–40053. [44] M.L. Gao, S.Y. Zhao, Z.Y. Chen, L. Liu, Z.B. Han, Superhydrophobic/superoleophilic MOF composites for oil–water separation, Inorg. Chem. 58 (4) (2019) 2261–2264. [45] S.A. Ganiyu, K. Alhooshani, K.O. Sulaiman, M. Qamaruddin, I.A. Bakare, A. Tanimu, T.A. Saleh, Influence of aluminium impregnation on activated carbon for enhanced desulfurization of DBT at ambient temperature: Role of surface acidity and textural properties, Chem. Eng. J. 303 (2016) 489–500. [46] S.Y. Jia, Y.F. Zhang, Y. Liu, F.X. Qin, H.T. Ren, S.H. Wu, Adsorptive removal of dibenzothiophene from model fuels over one-pot synthesized PTA@MIL-101(Cr) hybrid material, J. Hazard. Mater. 262 (2013) 589–597. [47] Z.Y. Zhang, T.B. Shi, C.Z. Jia, W.J. Ji, Y. Chen, M.Y. He, Adsorptive removal of aromatic organosulfur compounds over the modified Na-Y zeolites, Appl. Catal. B Environ. 82 (1–2) (2008) 1–10. [48] W. Dai, J. Hu, L.M. Zhou, S. Li, X. Hu, H. Huang, Removal of dibenzothiophene with composite adsorbent MOF-5/Cu(I), Energy Fuels 27 (2) (2013) 816–821. |