Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 480-487.DOI: 10.1016/j.cjche.2021.11.011
Previous Articles Next Articles
Tao Zhao, Dazhong Zhong, Genyan Hao, Guang Liu, Jinping Li, Qiang Zhao
Received:
2021-06-27
Revised:
2021-11-18
Online:
2022-02-25
Published:
2022-01-28
Contact:
Qiang Zhao,E-mail address:zhaoqiang@tyut.edu.cn
Supported by:
Tao Zhao, Dazhong Zhong, Genyan Hao, Guang Liu, Jinping Li, Qiang Zhao
通讯作者:
Qiang Zhao,E-mail address:zhaoqiang@tyut.edu.cn
基金资助:
Tao Zhao, Dazhong Zhong, Genyan Hao, Guang Liu, Jinping Li, Qiang Zhao. Ag nanoparticles anchored on MIL-100/nickel foam nanosheets as an electrocatalyst for efficient oxygen evolution reaction performance[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 480-487.
Tao Zhao, Dazhong Zhong, Genyan Hao, Guang Liu, Jinping Li, Qiang Zhao. Ag nanoparticles anchored on MIL-100/nickel foam nanosheets as an electrocatalyst for efficient oxygen evolution reaction performance[J]. 中国化学工程学报, 2022, 41(1): 480-487.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.11.011
[1] X.J. Wei, Y.H. Zhang, H.C. He, D. Gao, J.R. Hu, H.R. Peng, L. Peng, S.H. Xiao, P. Xiao, Carbon-incorporated NiO/Co3O4 concave surface microcubes derived from a MOF precursor for overall water splitting, Chem. Commun. 55(46) (2019) 6515–6518. [2] X. Mao, C.Y. Ling, C. Tang, C. Yan, Z.H. Zhu, A.J. Du, Predicting a new class of metal-organic frameworks as efficient catalyst for bi-functional oxygen evolution/reduction reactions, J. Catal. 367(2018) 206–211. [3] T. Liu, P. Li, N. Yao, T. Kong, G. Cheng, S. Chen, W. Luo, Self-sacrificial templatedirected vapor-phase growth of MOF assemblies and surface vulcanization for efficient water splitting, Adv. Mater. 31(21) (2019) e1806672. [4] C.P. Wang, H.Y. Liu, G. Bian, X. Gao, S. Zhao, Y. Kang, J. Zhu, X.H. Bu, Metal-layer assisted growth of ultralong quasi-2D MOF nanoarrays on arbitrary substrates for accelerated oxygen evolution, Small 15(51) (2019) e1906086. [5] C.F. Zhang, Z.W. Chen, Y.B. Lian, Y.J. Chen, Q. Li, Y.D. Gu, Y.T. Lu, Z. Deng, Y. Peng, Copper-based conductive metal organic framework In-situ grown on copper foam as a bifunctional electrocatalyst, Acta Phys. –Chim. Sin. 35(12) (2019) 1404–1411. [6] X.X. Li, P.Y. Zhu, Q. Li, Y.X. Xu, Y. Zhao, H. Pang, Nitrogen-, phosphorus-doped carbon-carbon nanotube CoP dodecahedra by controlling zinc content for high-performance electrocatalytic oxygen evolution, Rare Met. 39(6) (2020) 680–687. [7] D. Wu, Y.C. Wei, X. Ren, X.Q. Ji, Y.W. Liu, X.D. Guo, Z.A. Liu, A.M. Asiri, Q. Wei, X. P. Sun, Co(OH)2 nanoparticle-encapsulating conductive nanowires array: Room-temperature electrochemical preparation for high-performance water oxidation electrocatalysis, Adv. Mater. 30(9) (2018) 1705366. [8] X.Z. Li, Y.Y. Fang, X.Q. Lin, M. Tian, X.C. An, Y. Fu, R. Li, J. Jin, J.T. Ma, MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR, J. Mater. Chem. A 3(33) (2015) 17392–17402. [9] Q. Wang, F.Y. Liu, C.C. Wei, D.D. Li, W.J. Guo, Q. Zhao, High efficiency FeNimetal-organic framework grown in situ on nickel foam for electrocatalytic oxygen evolution, ChemistrySelect 4(19) (2019) 5988–5994. [10] K. Srinivas, Y.J. Lu, Y.F. Chen, W.L. Zhang, D.X. Yang, FeNi3–Fe3O4 heterogeneous nanoparticles anchored on 2D MOF nanosheets/1D CNT matrix as highly efficient bifunctional electrocatalysts for water splitting, ACS Sustainable Chem. Eng. 8(9) (2020) 3820–3831. [11] R.W. Liang, F.F. Jing, L.J. Shen, N. Qin, L. Wu, M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: Efficient visible-light photocatalysts for redox reactions in water, Nano Res. 8(10) (2015) 3237–3249. [12] Y.Q. Han, H.T. Xu, Y.Q. Su, Z.L. Xu, K.F. Wang, W.Z. Wang, Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts, J. Catal. 370(2019) 70–78. [13] B. Ye, R.H. Jiang, Z.B. Yu, Y.P. Hou, J. Huang, B.G. Zhang, Y.Y. Huang, Y.L. Zhang, R.Z. Zhang, Pt (11 1) quantum dot engineered Fe-MOF nanosheet arrays with porous core-shell as an electrocatalyst for efficient overall water splitting, J. Catal. 380(2019) 307–317. [14] X.Y. Li, G.X. Zhu, L.S. Xiao, Y.J. Liu, Z.Y. Ji, X.P. Shen, L.R. Kong, S.A. Shah, Loading of Ag on Fe-Co-S/N-doped carbon nanocomposite to achieve improved electrocatalytic activity for oxygen evolution reaction, J. Alloys Compd. 773(2019) 40–49. [15] X. Ding, Y. Xia, Q. Li, S. Dong, X. Jiao, D. Chen, Interface engineering of Co(OH)2/Ag/FeP hierarchical superstructure as efficient and robust electrocatalyst for overall water splitting, ACS Appl. Mater. Interfaces 11(8) (2019) 7936–7945. [16] R.H. Dong, H.R. Du, Y.X. Sun, K.F. Huang, W. Li, B.Y. Geng, Selective reduction–oxidation strategy to the conductivity-enhancing Ag-decorated Co-based 2D hydroxides as efficient electrocatalyst in oxygen evolution reaction, ACS Sustainable Chem. Eng. 6(10) (2018) 13420–13426. [17] F.Z. Sun, G. Wang, Y.Q. Ding, C. Wang, B.B. Yuan, Y.Q. Lin, NiFe-based metalorganic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction, Adv. Energy Mater. 8(21) (2018) 1800584.1–1800584.11, https://doi.org/10.1002/aenm.201800584. [18] H. Dong, X. Zhang, X.C. Yan, Y.X. Wang, X.J. Sun, G.L. Zhang, Y.J. Feng, F.M. Zhang, Mixed-metal-cluster strategy for boosting electrocatalytic oxygen evolution reaction of robust metal-organic frameworks, ACS Appl. Mater. Interfaces 11(48) (2019) 45080–45086. [19] J.W. Zhang, G.P. Lu, C. Cai, Self-hydrogen transfer hydrogenolysis of b-O-4 linkages in lignin catalyzed by MIL-100(Fe) supported Pd–Ni BMNPs, Green Chem. 19(19) (2017) 4538–4543. [20] J.J. Duan, S. Chen, C. Zhao, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting, Nat. Commun. 8(1) (2017) 1–7. [21] Q. Wang, C.C. Wei, D.D. Li, W.J. Guo, D.Z. Zhong, Q. Zhao, FeNi-based bimetallic MIL-101 directly applicable as an efficient electrocatalyst for oxygen evolution reaction, Microporous Mesoporous Mater. 286(2019) 92–97. [22] L. Yu, J.F. Yang, B.Y. Guan, Y. Lu, X.W.D. Lou, Hierarchical hollow nanoprisms based on ultrathin Ni-Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution, Angew. Chem. Int. Ed. Engl. 57(1) (2018) 172–176. [23] X.D. Du, X.H. Yi, P. Wang, J.G. Deng, C.C. Wang, Enhanced photocatalytic Cr(VI) reduction and diclofenac sodium degradation under simulated sunlight irradiation over MIL-100(Fe)/g-C3N4 heterojunctions, Chin. J. Catal. 40(1) (2019) 70–79. [24] X.F. Zhang, L. Chang, Z.J. Yang, Y.N. Shi, C. Long, J.Y. Han, B.H. Zhang, X.Y. Qiu, G. D. Li, Z.Y. Tang, Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis, Nano Res. 12(2) (2019) 437–440. [25] N.N. Zhu, X.H. Liu, T. Li, J.G. Ma, P. Cheng, G.M. Yang, Composite system of Ag nanoparticles and metal–organic frameworks for the capture and conversion of carbon dioxide under mild conditions, Inorg. Chem. 56(6) (2017) 3414–3420. [26] R. Canioni, C. Roch-Marchal, F. Sécheresse, P. Horcajada, C. Serre, M. Hardi-Dan, G. Férey, J.M. Grenèche, F. Lefebvre, J.S. Chang, Y.K. Hwang, O. Lebedev, S. Turner, G. van Tendeloo, Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe), J. Mater. Chem. 21(4) (2011) 1226–1233. [27] M.F. Qiao, Y. Wang, L. Li, G.Z. Hu, G.A. Zou, X. Mamat, Y.M. Dong, X. Hu, Selftemplated nitrogen-doped mesoporous carbon decorated with double transition-metal active sites for enhanced oxygen electrode catalysis, Rare Met. 39(7) (2020) 824–833. [28] Z.C. Wu, Z.X. Zou, J.S. Huang, F. Gao, Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting, J. Catal. 358(2018) 243–252. [29] J. Zhang, L. Yu, Y. Chen, X.F. Lu, S. Gao, X.W.D. Lou, Designed formation of double-shelled Ni-Fe layered-double-hydroxide nanocages for efficient oxygen evolution reaction, Adv. Mater. 32(16) (2020) e1906432. [30] X.Q. Ji, B.P. Liu, X. Ren, X.F. Shi, A.M. Asiri, X.P. Sun, P-doped Ag nanoparticles embedded in N-doped carbon nanoflake: An efficient electrocatalyst for the hydrogen evolution reaction, ACS Sustainable Chem. Eng. 6(4) (2018) 4499–4503. [31] C.Q. Meng, Y. Cao, Y.L. Luo, F. Zhang, Q.Q. Kong, A.A. Alshehri, K.A. Alzahrani, T. S. Li, Q. Liu, X.P. Sun, A Ni-MOF nanosheet array for efficient oxygen evolution electrocatalysis in alkaline media, Inorg. Chem. Front. 8(2021) 3007–3011. [32] F.Q. Zheng, D. Xiang, P. Li, Z.W. Zhang, C. Du, Z.H. Zhuang, X.K. Li, W. Chen, Highly conductive bimetallic Ni–Fe metal organic framework as a novel electrocatalyst for water oxidation, ACS Sustainable Chem. Eng. 7(11) (2019) 9743–9749. [33] Q. Wu, Q.P. Gao, L.M. Sun, H.M. Guo, X.S. Tai, D. Li, L. Liu, C.Y. Ling, X.P. Sun, Facilitating active species by decorating CeO2 on Ni3S2 nanosheets for efficient water oxidation electrocatalysis, Chin. J. Catal. 42(3) (2021) 482–489. [34] Y. Cao, T. Wang, X. Li, L.C. Zhang, Y.L. Luo, F. Zhang, A.M. Asiri, J.M. Hu, Q. Liu, X. P. Sun, A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction, Inorg. Chem. Front. 8(2021) 3049–3054. [35] T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Sci. Rep. 5(1) (2015) 1–21. [36] J.X. Guo, X.Q. Zhang, Y.F. Sun, L. Tang, Q.Y. Liu, X. Zhang, Loading Pt nanoparticles on metal–organic frameworks for improved oxygen evolution, ACS Sustainable Chem. Eng. 5(12) (2017) 11577–11583. [37] Y.M. Bi, Z. Cai, D.J. Zhou, Y. Tian, Q. Zhang, Q. Zhang, Y. Kuang, Y.P. Li, X.M. Sun, X. Duan, Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction, J. Catal. 358(2018) 100–107. [38] C. Ye, L.C. Zhang, L.C. Yue, B. Deng, Y. Cao, Q. Liu, Y.L. Luo, S.Y. Lu, B.Z. Zheng, X. P. Sun, A NiCo LDH nanosheet array on graphite felt: An efficient 3D electrocatalyst for the oxygen evolution reaction in alkaline media, Inorg. Chem. Front. 12(2021) 3162–3166. [39] Q. Wu, J. Li, T.W. Wu, L. Ji, R. Zhang, P.F. Jiang, H.Y. Chen, R.B. Zhao, A.M. Asiri, X. P. Sun, One-step preparation of cobalt-nanoparticle-embedded carbon for effective water oxidation electrocatalysis, ChemElectroChem 6(7) (2019) 1996–1999. [40] J.W. Li, R.Q. Lian, J.Y. Wang, S. He, S.P. Jiang, Z.B. Rui, Oxygen vacancy defects modulated electrocatalytic activity of iron-nickel layered double hydroxide on Ni foam as highly active electrodes for oxygen evolution reaction, Electrochim. Acta 331(2020) 135395.. [41] M.A. Oliver-Tolentino, J. Vázquez-Samperio, A. Manzo-Robledo, R. de Guadalupe González-Huerta, J.L. Flores-Moreno, D. Ramírez-Rosales, A. Guzmán-Vargas, An approach to understanding the electrocatalytic activity enhancement by superexchange interaction toward OER in alkaline media of Ni-Fe LDH, J. Phys. Chem. C 118(39) (2014) 22432–22438. [42] S. Anantharaj, K. Karthick, M. Venkatesh, T.V.S.V. Simha, A.S. Salunke, L. Ma, H. Liang, S. Kundu, Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces, Nano Energy 39(2017) 30–43. |
[1] | Shuo Li, Jianlin Cao, Xiang Feng, Yupeng Du, De Chen, Chaohe Yang, Wenhua Wang, Wanzhong Ren. Insights into the confinement effect on isobutane alkylation with C4 olefin catalyzed by zeolite catalyst: A combined theoretical and experimental study [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 174-184. |
[2] | Zhouxin Chang, Feng Yu, Zhisong Liu, Zijun Wang, Jiangbing Li, Bin Dai, Jinli Zhang. Ni-Al mixed metal oxide with rich oxygen vacancies: CO methanation performance and density functional theory study [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 73-83. |
[3] | Hualiang An, Rui Wang, Wenhao Wang, Daolai Sun, Xinqiang Zhao, Yanji Wang. A core–shell Ni/SiO2@TiO2 catalyst for highly selective one-step synthesis of 2-propylheptanol from n-pentanal [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 104-112. |
[4] | Weizhou Jiao, Xingyue Wei, Shengjuan Shao, Youzhi Liu. Catalytic decomposition and mass transfer of aqueous ozone promoted by Fe-Mn-Cu/γ-Al2O3 in a rotating packed bed [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 133-142. |
[5] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 284-293. |
[6] | Feng Guo, Zhihao Chen, Xiliu Huang, Longwen Cao, Xiaofang Cheng, Weilong Shi, Lizhuang Chen. Ternary Ni2P/Bi2MoO6/g-C3N4 composite with Z-scheme electron transfer path for enhanced removal broad-spectrum antibiotics by the synergistic effect of adsorption and photocatalysis [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 157-168. |
[7] | N. M'hanni, T. Anik, R. Touir, M. Galai, M. Ebn Touhami, E.H. Rifi, Z. Asfari, S. Bakkali. Effect of additives on nickel-phosphorus deposition obtained by electroless plating: Characterization and corrosion resistance in 3%(mass) sodium chloride medium [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 341-350. |
[8] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 392-401. |
[9] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[10] | Di Gao, Yibo Zhi, Liyuan Cao, Liang Zhao, Jinsen Gao, Chunming Xu, Mingzhi Ma, Pengfei Hao. Influence of zinc state on the catalyst properties of Zn/HZSM-5 zeolite in 1-hexene aromatization and cyclohexane dehydrogenation [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 124-134. |
[11] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[12] | Yanliang Zhou, Qianjin Sai, Zhenni Tan, Congying Wang, Xiuyun Wang, Bingyu Lin, Jun Ni, Jianxin Lin, Lilong Jiang. Highly efficient subnanometer Ru-based catalyst for ammonia synthesis via an associative mechanism [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 177-184. |
[13] | Xuanyi Jia, Xiaomin Hu, Qiao Wang, Baiquan Chen, Xingyue Xie, Lihong Huang. Auto-thermal reforming of acetic acid for hydrogen production by ZnxNiyCrOm±δ catalysts: Effect of Cr promoted Ni-Zn intermetallic compound [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 216-221. |
[14] | Lei Hu, Shunhui Tao, Junting Xian, Xiaodong Zhang, Yao Liu, Xiaojie Zheng, Xiaoqing Lin. Fabricating amide functional group modified hyper-cross-linked adsorption resin with enhanced adsorption and recognition performance for 5-hydroxymethylfurfural adsorption via simple one-step [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 230-239. |
[15] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||