Chinese Journal of Chemical Engineering ›› 2023, Vol. 58 ›› Issue (6): 53-68.DOI: 10.1016/j.cjche.2022.10.015
Previous Articles Next Articles
Wei Wang1,2, Romain Lemaire1, Ammar Bensakhria2, Denis Luart3
Received:
2022-06-24
Revised:
2022-10-01
Online:
2023-08-31
Published:
2023-06-28
Contact:
Romain Lemaire,E-mail:romain.lemaire@etsmtl.ca
Supported by:
Wei Wang1,2, Romain Lemaire1, Ammar Bensakhria2, Denis Luart3
通讯作者:
Romain Lemaire,E-mail:romain.lemaire@etsmtl.ca
基金资助:
Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood[J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68.
Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood[J]. 中国化学工程学报, 2023, 58(6): 53-68.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.10.015
[1] H.Y. Meng, S.Z. Wang, L. Chen, Z.Q. Wu, J. Zhao, Thermal behavior and the evolution of char structure during co-pyrolysis of platanus wood blends with different rank coals from Northern China, Fuel 158 (2015) 602-611. [2] K.M. Lu, W.J. Lee, W.H. Chen, T.C. Lin, Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends, Appl. Energy 105 (2013) 57-65. [3] W. Wang, R. Lemaire, A. Bensakhria, D. Luart, Review on the catalytic effects of alkali and alkaline earth metals (AAEMs) including sodium, potassium, calcium and magnesium on the pyrolysis of lignocellulosic biomass and on the co-pyrolysis of coal with biomass, J. Anal. Appl. Pyrolysis 163 (2022) 105479. [4] S.R. Wang, G.X. Dai, H.P. Yang, Z.Y. Luo, Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review, Prog. Energy Combust. Sci. 62 (2017) 33-86. [5] Z.G. Huang, J. Zhang, M.M. Pan, Y.H. Hao, R.C. Hu, W.B. Xiao, G. Li, T. Lyu, Valorisation of microalgae residues after lipid extraction: Pyrolysis characteristics for biofuel production, Biochem. Eng. J. 179 (2022) 108330. [6] G. Li, X. Bai, S.H. Huo, Z.G. Huang, Fast pyrolysis of LERDADEs for renewable biofuels, IET Renew. Power Gener. 14 (6) (2020) 959-967. [7] R.P. Anex, A. Aden, F.K. Kazi, J. Fortman, R.M. Swanson, M.M. Wright, J.A. Satrio, R.C. Brown, D.E. Daugaard, A. Platon, G. Kothandaraman, D.D. Hsu, A. Dutta, Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways, Fuel 89 (2010) S29-S35. [8] T.R. Brown, R. Thilakaratne, R.C. Brown, G.P. Hu, Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing, Fuel 106 (2013) 463-469. [9] S.M. Gouws, M. Carrier, J.R. Bunt, H.W.J.P. Neomagus, Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation, Renew. Sustain. Energy Rev. 135 (2021) 110189. [10] H. Tian, H. Jiao, J.M. Cai, J.W. Wang, Y. Yang, A.V. Bridgwater, Co-pyrolysis of Miscanthus Sacchariflorus and coals: A systematic study on the synergies in thermal decomposition, kinetics and vapour phase products, Fuel 262 (2020) 116603. [11] R.M. Soncini, N.C. Means, N.T. Weiland, Co-pyrolysis of low rank coals and biomass: Product distributions, Fuel 112 (2013) 74-82. [12] Z.Q. Wu, S.Z. Wang, J. Zhao, L. Chen, H.Y. Meng, Thermal behavior and char structure evolution of bituminous coal blends with edible fungi residue during co-pyrolysis, Energy Fuels 28 (3) (2014) 1792-1801. [13] Y.Y. Song, A. Tahmasebi, J.L. Yu, Co-pyrolysis of pine sawdust and lignite in a thermogravimetric analyzer and a fixed-bed reactor, Bioresour Technol 174 (2014) 204-211. [14] F.S. Yang, A.N. Zhou, W. Zhao, Z.Y. Yang, H.J. Li, Thermochemical behaviors, kinetics and gas emission analyses during co-pyrolysis of walnut shell and coal, Thermochimica Acta 673 (2019) 26-33. [15] S.X. Qiu, S.F. Zhang, X.H. Zhou, Q.Y. Zhang, G.B. Qiu, M.L. Hu, Z.X. You, L.Y. Wen, C.G. Bai, Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis, Renew. Energy 136 (2019) 308-316. [16] A.O. Aboyade, J.F. Görgens, M. Carrier, E.L. Meyer, J.H. Knoetze, Thermogravimetric study of the pyrolysis characteristics and kinetics of coal blends with corn and sugarcane residues, Fuel Process. Technol. 106 (2013) 310-320. [17] H.B. Vuthaluru, Thermal behaviour of coal/biomass blends during co-pyrolysis, Fuel Process. Technol. 85 (2-3) (2004) 141-155. [18] A.K. Sadhukhan, P. Gupta, T. Goyal, R.K. Saha, Modelling of pyrolysis of coal-biomass blends using thermogravimetric analysis, Bioresour. Technol. 99 (17) (2008) 8022-8026. [19] M.S. Masnadi, R. Habibi, J. Kopyscinski, J.M. Hill, X.T. Bi, C.J. Lim, N. Ellis, J.R. Grace, Fuel characterization and co-pyrolysis kinetics of biomass and fossil fuels, Fuel 117 (2014) 1204-1214. [20] B.W. Lin, J.S. Zhou, Q.W. Qin, X. Song, Z.Y. Luo, Thermal behavior and gas evolution characteristics during co-pyrolysis of lignocellulosic biomass and coal: A TG-FTIR investigation, J. Anal. Appl. Pyrolysis 144 (2019) 104718. [21] M. Ma, Y.H. Bai, X.D. Song, J.F. Wang, W.G. Su, M. Yao, G.S. Yu, Investigation into the co-pyrolysis behaviors of cow manure and coal blending by TG-MS, Sci. Total. Environ. 728 (2020) 138828. [22] Z.Q. Wu, Y.W. Li, D.H. Xu, H.Y. Meng, Co-pyrolysis of lignocellulosic biomass with low-quality coal: Optimal design and synergistic effect from gaseous products distribution, Fuel 236 (2019) 43-54. [23] S.D. Li, X.L. Chen, A.B. Liu, L. Wang, G.S. Yu, Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor, Bioresour. Technol. 155 (2014) 252-257. [24] S.J. Gerssen-Gondelach, D. Saygin, B. Wicke, M.K. Patel, A.P.C. Faaij, Competing uses of biomass: Assessment and comparison of the performance of bio-based heat, power, fuels and materials, Renew. Sustain. Energy Rev. 40 (2014) 964-998. [25] K. Konwar, H.P. Nath, N. Bhuyan, B.K. Saikia, R.C. Borah, A.C. Kalita, N. Saikia, Effect of biomass addition on the devolatilization kinetics, mechanisms and thermodynamics of a northeast Indian low rank sub-bituminous coal, Fuel 256 (2019) 115926. [26] S. Vyazovkin, C.A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data, Thermochimica Acta 340-341 (1999) 53-68. [27] Z.H. Chen, M. Hu, X.L. Zhu, D.B. Guo, S.M. Liu, Z.Q. Hu, B. Xiao, J.B. Wang, M. Laghari, Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis, Bioresour. Technol. 192 (2015) 441-450. [28] E. Ranzi, A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca, S. Pierucci, S. Sommariva, Chemical kinetics of biomass pyrolysis, Energy Fuels 22 (6) (2008) 4292-4300. [29] S. Sommariva, T. Maffei, G. Migliavacca, T. Faravelli, E. Ranzi, A predictive multi-step kinetic model of coal devolatilization, Fuel 89 (2) (2010) 318-328. [30] T. Maffei, A. Frassoldati, A. Cuoci, E. Ranzi, T. Faravelli, Predictive one step kinetic model of coal pyrolysis for CFD applications, Proc. Combust. Inst. 34 (2) (2013) 2401-2410. [31] D.M. Grant, R.J. Pugmire, T.H. Fletcher, A.R. Kerstein, Chemical model of coal devolatilization using percolation lattice statistics, Energy Fuels 3 (2) (1989) 175-186. [32] A.D. Lewis, T.H. Fletcher, Prediction of sawdust pyrolysis yields from a flat-flame burner using the CPD model, Energy Fuels 27 (2) (2013) 942-953. [33] A.K. Varma, P. Mondal, Physicochemical characterization and kinetic study of pine needle for pyrolysis process, J. Therm. Anal. Calorim. 124 (1) (2016) 487-497. [34] A. Ashraf, H. Sattar, S. Munir, A comparative applicability study of model-fitting and model-free kinetic analysis approaches to non-isothermal pyrolysis of coal and agricultural residues, Fuel 240 (2019) 326-333. [35] S. Saeed, M. Saleem, A. Durrani, Thermal performance analysis and synergistic effect on co-pyrolysis of coal and sugarcane bagasse blends pretreated by trihexyltetradecylphosphonium chloride, Fuel 278 (2020) 118240. [36] A. Gupta, S.K. Thengane, S. Mahajani, Kinetics of pyrolysis and gasification of cotton stalk in the central parts of India, Fuel 263 (2020) 116752. [37] A. Sahoo, S. Kumar, J. Kumar, T. Bhaskar, A detailed assessment of pyrolysis kinetics of invasive lignocellulosic biomasses (Prosopis juliflora and Lantana camara) by thermogravimetric analysis, Bioresour. Technol. 319 (2021) 124060. [38] T. Ozawa, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Jpn. 38 (11) (1965) 1881-1886. [39] C.X. Chen, X.Q. Ma, Y. He, Co-pyrolysis characteristics of microalgae Chlorella vulgaris and coal through TGA, Bioresour. Technol. 117 (2012) 264-273. [40] Y.Y. He, C. Chang, P. Li, X.L. Han, H.L. Li, S.Q. Fang, J.Y. Chen, X.J. Ma, Thermal decomposition and kinetics of coal and fermented cornstalk using thermogravimetric analysis, Bioresour. Technol. 259 (2018) 294-303. [41] L. Florentino-Madiedo, M.F. Vega, E. Díaz-Faes, C. Barriocanal, Evaluation of synergy during co-pyrolysis of torrefied sawdust, coal and paraffin. A kinetic and thermodynamic dataset, Data Brief 37 (2021) 107170. [42] H.P. Nath, B.K. Dutta, D. Kalita, B.K. Saikia, N. Saikia, Evaluation of the effect of high sulfur subbituminous coal on the devolatilization of biomass residue by using model free, model fitting and combined kinetic methods, Fuel 310 (2022) 122235. [43] A. Khawam, D.R. Flanagan, Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics, J. Phys. Chem. B 109 (20) (2005) 10073-10080. [44] R. Moriana, Y.J. Zhang, P. Mischnick, J.B. Li, M. Ek, Thermal degradation behavior and kinetic analysis of spruce glucomannan and its methylated derivatives, Carbohydr. Polym. 106 (2014) 60-70. [45] S.R. Wang, H.Z. Lin, B. Ru, G.X. Dai, X.L. Wang, G. Xiao, Z.Y. Luo, Kinetic modeling of biomass components pyrolysis using a sequential and coupling method, Fuel 185 (2016) 763-771. [46] H. Zhang, B.L. Dou, H. Zhang, J.J. Li, C.J. Ruan, C.F. Wu, Study on non-isothermal kinetics and the influence of calcium oxide on hydrogen production during bituminous coal pyrolysis, J. Anal. Appl. Pyrolysis 150 (2020) 104888. [47] J.C. Yan, M.X. Liu, Z.H. Feng, Z.Q. Bai, H.F. Shui, Z.K. Li, Z.P. Lei, Z.C. Wang, S.B. Ren, S.G. Kang, H.L. Yan, Study on the pyrolysis kinetics of low-medium rank coals with distributed activation energy model, Fuel 261 (2020) 116359. [48] É. de Godois Baroni, K. Tannous, Y.J. Rueda-Ordóñez, L.K. Tinoco-Navarro, The applicability of isoconversional models in estimating the kinetic parameters of biomass pyrolysis, J. Therm. Anal. Calorim. 123 (2) (2016) 909-917. [49] J.H. Flynn, L.A. Wall, General treatment of the thermogravimetry of polymers, J. Res. Natl. Bur. Stand. A Phys. Chem. 70A (6) (1966) 487-523. [50] H.E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (11) (1957) 1702-1706. [51] T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials, Res. Rep. Chiba Inst. Technol. 16 (1971) 22-31. [52] V. Bert, J. Allemon, P. Sajet, S. Dieu, A. Papin, S. Collet, R. Gaucher, M. Chalot, B. Michiels, C. Raventos, Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: Effect of temperature and biomass chlorine content on metal distribution in end-products and valorization options, Biomass Bioenergy 96 (2017) 1-11. [53] F. Rego, A.P. Soares Dias, M. Casquilho, F.C. Rosa, A. Rodrigues, Pyrolysis kinetics of short rotation coppice poplar biomass, Energy 207 (2020) 118191. [54] Z.J. Cheng, X.Z. Gao, Z.H. Ma, X. Guo, J.L. Wang, P.P. Luan, S.R. He, B.B. Yan, G.Y. Chen, Studies on synergistic effects in co-pyrolysis of sargassum and poplar: Thermal behavior and kinetics, J. Anal. Appl. Pyrolysis 167 (2022) 105660. [55] R. Lemaire, D. Menage, S. Menanteau, J.L. Harion, Experimental study and kinetic modeling of pulverized coal devolatilization under air and oxycombustion conditions at a high heating rate, Fuel Process. Technol. 128 (2014) 183-190. [56] R. Lemaire, D. Menage, P. Seers, Study of the high heating rate devolatilization of bituminous and subbituminous coals—Comparison of experimentally monitored devolatilization profiles with predictions issued from single rate, two-competing rate, distributed activation energy and chemical percolation devolatilization models, J. Anal. Appl. Pyrolysis 123 (2017) 255-268. [57] D. Menage, R. Lemaire, P. Seers, Experimental study and chemical reactor network modeling of the high heating rate devolatilization and oxidation of pulverized bituminous coals under air, oxygen-enriched combustion (OEC) and oxy-fuel combustion (OFC), Fuel Process. Technol. 177 (2018) 179-193. [58] V. Balasundram, N. Ibrahim, R.M. Kasmani, M.K.A. Hamid, R. Isha, H. Hasbullah, R.R. Ali, Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil, J. Clean. Prod. 167 (2017) 218-228. [59] Y.F. Wu, J.L. Zhu, Y.M. Wang, H. Yang, L.J. Jin, H.Q. Hu, Insight into co-pyrolysis interactions of Pingshuo coal and high-density polyethylene via in situ Py-TOF-MS and EPR, Fuel 303 (2021) 121199. [60] P.E. Sánchez-Jiménez, L.A. Pérez-Maqueda, A. Perejón, J.M. Criado, Generalized master plots as a straightforward approach for determining the kinetic model: The case of cellulose pyrolysis, Thermochimica Acta 552 (2013) 54-59. [61] J.H. Flynn, The isoconversional method for determination of energy of activation at constant heating rates, J. Therm. Anal. 27 (1) (1983) 95-102. [62] G.I. Senum, R.T. Yang, Rational approximations of the integral of the Arrhenius function, J. Therm. Anal. 11 (3) (1977) 445-447. [63] J. Wang, S.Y. Zhang, X. Guo, A.X. Dong, C. Chen, S.W. Xiong, Y.T. Fang, W.D. Yin, Thermal behaviors and kinetics of pingshuo coal/biomass blends during copyrolysis and cocombustion, Energy Fuels 26 (12) (2012) 7120-7126. [64] A. Blazej, M. Kosik, Phytomass: A Raw Material for Chemistry and Biotechnology, Ellis Horwood, New York (1993). [65] E. Kastanaki, D. Vamvuka, P. Grammelis, E. Kakaras, Thermogravimetric studies of the behavior of lignite-biomass blends during devolatilization, Fuel Process. Technol. 77-78 (2002) 159-166. [66] H. Wu, H. Li, Z. Zhao, Thermogravimetric analysis and pyrolytic kinetic study on coal/biomass blends, J. Fuel Chem. Technol. 37 (2009) 538-545. [67] H.Y. Zhao, Q. Song, S.C. Liu, Y.H. Li, X.H. Wang, X.Q. Shu, Study on catalytic co-pyrolysis of physical mixture/staged pyrolysis characteristics of lignite and straw over an catalytic beds of char and its mechanism, Energy Convers. Manag. 161 (2018) 13-26. [68] Y. Zhao, L. Liu, P.H. Qiu, X. Xie, X.Y. Chen, D. Lin, S.Z. Sun, Impacts of chemical fractionation on Zhundong coal's chemical structure and pyrolysis reactivity, Fuel Process. Technol. 155 (2017) 144-152. [69] T.B. Gu, Z.F. Fu, T. Berning, X.T. Li, C.G. Yin, A simplified kinetic model based on a universal description for solid fuels pyrolysis: Theoretical derivation, experimental validation, and application demonstration, Energy 225 (2021) 120133. [70] B. Tian, X.R. Wang, W.Y. Zhao, L. Xu, L. Bai, Pyrolysis behaviors, kinetics and gaseous product evolutions of two typical biomass wastes, Catal. Today 374 (2021) 77-85. [71] S. Vyazovkin, K. Chrissafis, M.L. di Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Suñol, ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations, Thermochimica Acta 590 (2014) 1-23. [72] F. Nardella, M. Mattonai, E. Ribechini, Evolved gas analysis-mass spectrometry and isoconversional methods for the estimation of component-specific kinetic data in wood pyrolysis, J. Anal. Appl. Pyrolysis 145 (2020) 104725. [73] K. Slopiecka, P. Bartocci, F. Fantozzi, Thermogravimetric analysis and kinetic study of poplar wood pyrolysis, Appl. Energy 97 (2012) 491-497. [74] J.C. Yan, H.R. Jiao, Z.K. Li, Z.P. Lei, Z.C. Wang, S.B. Ren, H.F. Shui, S.G. Kang, H.L. Yan, C.X. Pan, Kinetic analysis and modeling of coal pyrolysis with model-free methods, Fuel 241 (2019) 382-391. [75] F. Ferrara, A. Orsini, A. Plaisant, A. Pettinau, Pyrolysis of coal, biomass and their blends: Performance assessment by thermogravimetric analysis, Bioresour Technol 171 (2014) 433-441. [76] A.C. Minh Loy, S. Yusup, B.L. Fui Chin, D.K. Wai Gan, M. Shahbaz, M.N. Acda, P. Unrean, E. Rianawati, Comparative study of in situ catalytic pyrolysis of rice husk for syngas production: Kinetics modelling and product gas analysis, J. Clean. Prod. 197 (2018) 1231-1243. [77] D.K.W. Gan, A.C.M. Loy, B.L.F. Chin, S. Yusup, P. Unrean, E. Rianawati, M.N. Acda, Kinetics and thermodynamic analysis in one-pot pyrolysis of rice hull using renewable calcium oxide based catalysts, Bioresour. Technol. 265 (2018) 180-190. [78] R.K. Mishra, K. Mohanty, Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresour. Technol. 251 (2018) 63-74. [79] Y.M. Ding, O.A. Ezekoye, S.X. Lu, C.J. Wang, R. Zhou, Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood, Energy Convers. Manag. 132 (2017) 102-109. [80] R.K. Singh, T. Patil, D. Pandey, S.P. Tekade, A.N. Sawarkar, Co-pyrolysis of petroleum coke and banana leaves biomass: Kinetics, reaction mechanism, and thermodynamic analysis, J. Environ. Manag. 301 (2022) 113854. [81] Q. He, C. Cheng, X.S. Zhang, Q.H. Guo, L. Ding, A. Raheem, G.S. Yu, Insight into structural evolution and detailed non-isothermal kinetic analysis for coal pyrolysis, Energy 244 (2022) 123101. [82] Y.H. Li, H.Y. Zhao, X. Sui, X.M. Wang, H.B. Ji, Studies on individual pyrolysis and co-pyrolysis of peat-biomass blends: Thermal decomposition behavior, possible synergism, product characteristic evaluations and kinetics, Fuel 310 (2022) 122280. [83] Q.R. Liu, H.Q. Hu, Q. Zhou, S.W. Zhu, G.H. Chen, Effect of inorganic matter on reactivity and kinetics of coal pyrolysis, Fuel 83 (6) (2004) 713-718. [84] M. Sharifzadeh, M. Sadeqzadeh, M. Guo, T.N. Borhani, N.V.S.N. Murthy Konda, M.C. Garcia, L. Wang, J. Hallett, N. Shah, The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions, Prog. Energy Combust. Sci. 71 (2019) 1-80. [85] X. Hu, M. Gholizadeh, Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage, J. Energy Chem. 39 (2019) 109-143. [86] G. Mishra, T. Bhaskar, Non isothermal model free kinetics for pyrolysis of rice straw, Bioresour. Technol. 169 (2014) 614-621. [87] S. Sobek, S. Werle, Solar pyrolysis of waste biomass: A comparative study of products distribution, in situ heating behavior, and application of model-free kinetic predictions, Fuel 292 (2021) 120365. [88] W. Wang, R. Lemaire, Global kinetic modeling of the devolatilization of pulverized coal and poplar wood in a thermogravimetric analyzer and a flat flame reactor, in: Proceedings of the Combustion Institute - Canadian Section, Spring Technical Meeting, The University of Ottawa, Canada, 2022. |
[1] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[2] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[3] | Haixiang Liu, Jun Zhang, Chunlei Dong, Gang Zhu, Guanben Du, Shuduan Deng. Synthesis, performance and structure characterization of glyoxal-monomethylolurea-melamine (G-MMU-M) co-condensed resin [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 92-104. |
[4] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[5] | Jian Han, Xinhua Liu, Shanwei Hu, Nan Zhang, Jingjing Wang, Bin Liang. Optimization of decoupling combustion characteristics of coal briquettes and biomass pellets in household stoves [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 182-192. |
[6] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[7] | Jiangshan Qu, Jianbo Zhang, Huiquan Li, Shaopeng Li, Da Shi, Ruiqi Chang, Wenfen Wu, Ganyu Zhu, Chennian Yang, Chenye Wang. Occurrence, leaching behavior, and detoxification of heavy metal Cr in coal gasification slag [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 11-19. |
[8] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
[9] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[10] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[11] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[12] | Jian Wang, Yuanhui Shen, Donghui Zhang, Zhongli Tang, Wenbin Li. Integrated vacuum pressure swing adsorption and Rectisol process for CO2 capture from underground coal gasification syngas [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 265-279. |
[13] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[14] | Jinchang Liu, Chenyang Shen, Lujie Huang, Tinghao Fang, Yaping Li, Dingcheng Liang, Qiang Xie. Preparation of pitch precursor with excellent spinnability for general-purpose carbon fibre using coal tar pitch as raw material [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 22-28. |
[15] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||