Chinese Journal of Chemical Engineering ›› 2023, Vol. 58 ›› Issue (6): 266-281.DOI: 10.1016/j.cjche.2022.10.018
Previous Articles Next Articles
Xinyu Liu1, Hongliang Sheng2, Song He1, Chunhua Du1, Yuansheng Ma1, Chichi Ruan1, Chunxiang He1, Huaming Dai1, Yajun Huang3, Yuelei Pan3
Received:
2022-06-14
Revised:
2022-10-21
Online:
2023-08-31
Published:
2023-06-28
Contact:
Hongliang Sheng,E-mail:sheng.hl@sinoma-wbmdi.cn;Song He,E-mail:hsong@whut.edu.cn
Supported by:
Xinyu Liu1, Hongliang Sheng2, Song He1, Chunhua Du1, Yuansheng Ma1, Chichi Ruan1, Chunxiang He1, Huaming Dai1, Yajun Huang3, Yuelei Pan3
通讯作者:
Hongliang Sheng,E-mail:sheng.hl@sinoma-wbmdi.cn;Song He,E-mail:hsong@whut.edu.cn
基金资助:
Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels[J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281.
Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels[J]. 中国化学工程学报, 2023, 58(6): 266-281.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.10.018
[1] D. Dan, H. Zhang, W.Q. Tao, Effective structure of aerogels and decomposed contributions of its thermal conductivity, Appl. Therm. Eng. 72 (1) (2014) 2-9. [2] Z.H. Li, R.X. Liao, R.P. Jia, Y.F. Liu, X.W. Xu, J. Shen, X.D. Wang, G.M. Wu, Q.S. Wu, J.C. Shi, A novel preparation of superhydrophobic silica aerogels via the combustion drying method, Ceram. Int. 47 (18) (2021) 25274-25280. [3] N. Hüsing, U. Schubert, Aerogels—airy materials: Chemistry, structure, and properties, Angewandte Chemie Int. Ed. 37 (1-2) (1998) 22-45. [4] E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Toward aerogel based thermal superinsulation in buildings: A comprehensive review, Renew. Sustain. Energy Rev. 34 (2014) 273-299. [5] K. Chen, A. Neugebauer, T. Goutierre, A. Tang, L. Glicksman, L.J. Gibson, Mechanical and thermal performance of aerogel-filled sandwich panels for building insulation, Energy Build. 76 (2014) 336-346. [6] H.X. Yang, F. Ye, Q. Liu, Y. Gao, Microstructure and properties of the Si3N4/silica aerogel composites fabricated by the Sol-gel method via ambient pressure drying, Mater. Des. 85 (2015) 438-443. [7] H.M. Kim, Y.J. Noh, J. Yu, S.Y. Kim, J.R. Youn, Silica aerogel/polyvinyl alcohol (PVA) insulation composites with preserved aerogel pores using interfaces between the superhydrophobic aerogel and hydrophilic PVA solution, Compos. A Appl. Sci. Manuf. 75 (2015) 39-45. [8] E.T. Afriyie, P. Karami, P. Norberg, K. Gudmundsson, Textural and thermal conductivity properties of a low density mesoporous silica material, Energy Build. 75 (2014) 210-215. [9] A. Neugebauer, K. Chen, A. Tang, A. Allgeier, L.R. Glicksman, L.J. Gibson, Thermal conductivity and characterization of compacted, granular silica aerogel, Energy Build. 79 (2014) 47-57. [10] S. He, C.C. Ruan, Y.J. Shi, G.Y. Chen, Y.S. Ma, H.M. Dai, X.F. Chen, X.B. Yang, Insight to hydrophobic SiO2 encapsulated SiO2 gel: Preparation and application in fire extinguishing, J. Hazard. Mater. 405 (2021) 124216. [11] G.Y. Chen, S. He, G.B. Shi, Y.S. Ma, C.C. Ruan, X. Jin, Q.L. Chen, X.Y. Liu, H.M. Dai, X.F. Chen, D.M. Huang, In-situ immobilization of ZIF-67 on wood aerogel for effective removal of tetracycline from water, Chem. Eng. J. 423 (2021) 130184. [12] S. Standeker, Z. Novak, Z. Knez, Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity, J. Hazard. Mater. 165 (1-3) (2009) 1114-1118. [13] A. Santos, M. Ajbary, V. Morales-Flórez, A. Kherbeche, M. Piñero, L. Esquivias, Larnite powders and larnite/silica aerogel composites as effective agents for CO2 sequestration by carbonation, J. Hazard. Mater. 168 (2-3) (2009) 1397-1403. [14] J.L. Gurav, D.Y. Nadargi, A.V. Rao, Effect of mixed Catalysts system on TEOS-based silica aerogels dried at ambient pressure, Appl. Surf. Sci. 255 (5) (2008) 3019-3027. [15] O.A. Pinchuk, F. Dundar, A.L. Ata, K.J. Wynne, Improved thermal stability, properties, and electrocatalytic activity of Sol-gel silica modified carbon supported Pt catalysts, Int. J. Hydrog. Energy 37 (3) (2012) 2111-2120. [16] Y.Q. Zhao, Y.H. Liang, X.Z. Zhao, Q.Y. Jia, H.S. Li, Preparation and microstructure of CuO-CoO-MnO/SiO2 nanocomposite aerogels and xerogels as catalyst carriers, Prog. Nat. Sci. Mater. Int. 21 (4) (2011) 330-335. [17] J.E. Fesmire, Aerogel insulation systems for space launch applications, Cryogenics 46 (2-3) (2006) 111-117. [18] J.P. Randall, M.A.B. Meador, S.C. Jana, Tailoring mechanical properties of aerogels for aerospace applications, ACS Appl. Mater. Interfaces 3 (3) (2011) 613-626. [19] R. Baetens, B.P. Jelle, A. Gustavsen, Aerogel insulation for building applications: A state-of-the-art review, Energy Build. 43 (4) (2011) 761-769. [20] E. Cuce, P.M. Cuce, C.J. Wood, S.B. Riffat, Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings, Energy Build. 77 (2014) 28-39. [21] Y.K. Zhou, Artificial neural network-based smart aerogel glazing in low-energy buildings: A state-of-the-art review, iScience 24 (12) (2021) 103420. [22] H.Y. Zhang, J.M. Yang, H.J. Wu, P. Fu, Y.C. Liu, W.B. Yang, Dynamic thermal performance of ultra-light and thermal-insulative aerogel foamed concrete for building energy efficiency, Sol. Energy 204 (2020) 569-576. [23] A. Lamy-Mendes, A.D.R. Pontinha, P. Alves, P. Santos, L. Durães, Progress in silica aerogel-containing materials for buildings' thermal insulation, Constr. Build. Mater. 286 (2021) 122815. [24] X.J. Yue, H. Wu, T. Zhang, D.Y. Yang, F.X. Qiu, Superhydrophobic waste paper-based aerogel as a thermal insulating cooler for building, Energy 245 (2022) 123287. [25] S. He, Y.J. Huang, G.N. Chen, M.M. Feng, H.M. Dai, B.H. Yuan, X.F. Chen, Effect of heat treatment on hydrophobic silica aerogel, J. Hazard. Mater. 362 (2019) 294-302. [26] Z.Y. Chen, Z.K. Li, P. Lan, H. Xu, N. Lin, Hydrophobic and thermal-insulating aerogels based on rigid cellulose nanocrystal and elastic rubber, Carbohydr. Polym. 275 (2022) 118708. [27] Z. Li, X.D. Cheng, L. Shi, S. He, L.L. Gong, C.C. Li, H.P. Zhang, Flammability and oxidation kinetics of hydrophobic silica aerogels, J. Hazard. Mater. 320 (2016) 350-358. [28] X.Y. Zhou, H.R. Jin, T.T. Xu, J.B. Wang, Y. Zhu, S.J. Ding, T. Hu, S. Yun, J. Chen, Excellent flame retardant and thermal insulated palygorskite/wood fiber composite aerogels with improved mechanical properties, Appl. Clay Sci. 184 (2020) 105402. [29] H. Lee, D. Lee, J. Cho, Y.O. Kim, S. Lim, S. Youn, Y.C. Jung, S.Y. Kim, D.G. Seong, Super-insulating, flame-retardant, and flexible poly(dimethylsiloxane) composites based on silica aerogel, Compos. A Appl. Sci. Manuf. 123 (2019) 108-113. [30] J.M. Sun, Z.W. Wu, B. An, C.H. Ma, L.F. Xu, Z.S. Zhang, S. Luo, W. Li, S.X. Liu, Thermal-insulating, flame-retardant and mechanically resistant aerogel based on bio-inspired tubular cellulose, Compos. B Eng. 220 (2021) 108997. [31] G. Baldauf-Sommerbauer, S. Lux, J. Wagner, M. Siebenhofer, Determination of the kinetic triplet by an isoconversional and a regression method applied to the decomposition of mineral iron carbonate in nitrogen, Thermochimica Acta 649 (2017) 1-12. [32] M. Li, L. Jiang, J.J. He, J.H. Sun, Kinetic triplet determination and modified mechanism function construction for thermo-oxidative degradation of waste polyurethane foam using conventional methods and distributed activation energy model method, Energy 175 (2019) 1-13. [33] P. Deb, Kinetics of heterogeneous solid state processes, Springer, Berlin, 2013. [34] A. Soria-Verdugo, M.T. Morgano, H. Mätzing, E. Goos, H. Leibold, D. Merz, U. Riedel, D. Stapf, Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods, Energy Convers. Manag. 212 (2020) 112818. [35] F.N. Sidek, S. Saleh, N.A.F. Abdul Samad, Kinetic parameter estimation for pyrolysis of empty fruit bunch using model-fitting and model-free methods, Mater. Today Proc. 57 (2022) 1241-1247. [36] S. Vyazovkin, A.K. Burnham, J.M. Criado, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochimica Acta 520 (1-2) (2011) 1-19. [37] H. Merdun, Z.B. Laougé, Kinetic and thermodynamic analyses during co-pyrolysis of greenhouse wastes and coal by TGA, Renew. Energy 163 (2021) 453-464. [38] S. Vyazovkin, Model-freekinetics, J. Therm. Anal. Calorim. 83 (1) (2006) 45-51. [39] C.X. Liu, X.J. Duan, Q.S. Chen, C. Chao, Z.H. Lu, Q.J. Lai, M. Megharaj, Investigations on pyrolysis of microalgae diplosphaera sp. MM1 by TG-FTIR and py-GC/MS: Products and kinetics, Bioresour. Technol. 294 (2019) 122126. [40] E. Părpăriţă, M.T. Nistor, M.C. Popescu, C. Vasile, TG/FT-IR/MS study on thermal decomposition of polypropylene/biomass composites, Polym. Degrad. Stab. 109 (2014) 13-20. [41] R. Kaur, P. Gera, M.K. Jha, T. Bhaskar, Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis, Bioresour. Technol. 250 (2018) 422-428. [42] Z.H. Chen, J.S. Lei, Y.B. Li, X.F. Su, Z.Q. Hu, D.B. Guo, Studies on thermokinetic of Chlorella pyrenoidosa devolatilization via different models, Bioresour. Technol. 244 (Pt 1) (2017) 320-327. [43] M.S. Ahmad, M.A. Mehmood, O.S. Al Ayed, G.B. Ye, H.B. Luo, M. Ibrahim, U. Rashid, I. Arbi Nehdi, G. Qadir, Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential, Bioresour. Technol. 224 (2017) 708-713. [44] Q.Y. Xu, S.Q. Tang, J.C. Wang, J.H. Ko, Pyrolysis kinetics of sewage sludge and its biochar characteristics, Process. Saf. Environ. Prot. 115 (2018) 49-56. [45] M. Venkatesh, P. Ravi, S.P. Tewari, Isoconversional kinetic analysis of decomposition of nitroimidazoles: Friedman method vs Flynn-Wall-Ozawa method, J. Phys. Chem. A 117 (40) (2013) 10162-10169. [46] T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials, Res. Report Chiba Inst. Technol., 16 (1971) 22-23. [47] D.B. Pal, N. Srivastava, S.L. Pal, M. Kumar, A. Syed, A.M. Elgorban, R. Singh, V.K. Gupta, Lignocellulosic composition based thermal kinetic study of Mangiferaindica Lam, Artocarpus Heterophyllus Lam and Syzygium Jambolana seeds, Bioresour. Technol. 341 (2021) 125891. [48] M. Kumar, D. Rai, G. Bhardwaj, S.N. Upadhyay, P.K. Mishra, Pyrolysis of peanut shell: Kinetic analysis and optimization of thermal degradation process, Ind. Crops Prod. 174 (2021) 114128. [49] L.P. Luo, Z.Y. Zhang, C. Li, Nishu, F. He, X.G. Zhang, J.M. Cai, Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis, Energy 233 (2021) 121194. [50] F.J. Gotor, J.M. Criado, J. Malek, N. Koga, Kinetic analysis of solid-state reactions: The universality of master plots for analyzing isothermal and nonisothermal experiments, J. Phys. Chem. A 104 (46) (2000) 10777-10782. [51] Z. Li, X.D. Cheng, S. He, X.J. Shi, H. Yang, Characteristics of ambient-pressure-dried aerogels synthesized via different surface modification methods, J. Sol Gel Sci. Technol. 76 (1) (2015) 138-149. [52] Y. Huang, S. He, M. Feng, H. Dai, Y. Pan, X. Cheng, Organic solvent-saving preparation of water glass based aerogel granules under ambient pressure drying, Journal of Non-Crystalline Solids, 521 (2019)119507. [53] R.Y. Chen, Q.W. Li, Y. Zhang, X.K. Xu, D.D. Zhang, Pyrolysis kinetics and mechanism of typical industrial non-tyre rubber wastes by peak-differentiating analysis and multi kinetics methods, Fuel 235 (2019) 1224-1237. [54] K.Y. Li, X.Y. Huang, C. Fleischmann, G. Rein, J. Ji, Pyrolysis of medium-density fiberboard: Optimized search for kinetics scheme and parameters via a genetic algorithm driven by kissinger's method, Energy Fuels 28 (9) (2014) 6130-6139. [55] R.Y. Chen, Q.W. Li, X.K. Xu, D.D. Zhang, Pyrolysis kinetics and reaction mechanism of representative non-charring polymer waste with micron particle size, Energy Convers. Manag. 198 (2019) 111923. [56] F. Rego, A.P. Soares Dias, M. Casquilho, F.C. Rosa, A. Rodrigues, Pyrolysis kinetics of short rotation coppice poplar biomass, Energy 207 (2020) 118191. [57] R.Y. Chen, Q.W. Li, X.K. Xu, D.D. Zhang, R.L. Hao, Combustion characteristics, kinetics and thermodynamics of Pinus Sylvestris pine needle via non-isothermal thermogravimetry coupled with model-free and model-fitting methods, Case Stud. Therm. Eng. 22 (2020) 100756. [58] H.D. Liu, G.R. Xu, G.B. Li, Pyrolysis characteristic and kinetic analysis of sewage sludge using model-free and master plots methods, Process. Saf. Environ. Prot. 149 (2021) 48-55. [59] Z.Q. Ma, D.Y. Chen, J. Gu, B.F. Bao, Q.S. Zhang, Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods, Energy Convers. Manag. 89 (2015) 251-259. [60] Y.M. Ding, O.A. Ezekoye, S.X. Lu, C.J. Wang, Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis, Energy Convers. Manag. 120 (2016) 370-377. [61] S. He, D.M. Huang, H.J. Bi, Z. Li, H. Yang, X.D. Cheng, Synthesis and characterization of silica aerogels dried under ambient pressure bed on water glass, J. Non Cryst. Solids 410 (2015) 58-64. [62] V. Vasudev, X.K. Ku, J.Z. Lin, Kinetic study and pyrolysis characteristics of algal and lignocellulosic biomasses, Bioresour. Technol. 288 (2019) 121496. [63] N. Koga, H. Tanaka, Accommodation of the actual solid-state process in the kinetic model function, J. Therm. Anal. 41 (2-3) (1994) 455-469. [64] J. Málek, The applicability of Johnson-Mehl-Avrami model in the thermal analysis of the crystallization kinetics of glasses, Thermochimica Acta 267 (1995) 61-73. [65] A. Sriram, G. Swaminathan, Pyrolysis of Musa balbisiana flower petal using thermogravimetric studies, Bioresour. Technol. 265 (2018) 236-246. [66] V.O. Santos, L.S. Queiroz, R.O. Araujo, F.C.P. Ribeiro, M.N. Guimarães, C.E.F. da Costa, J.S. Chaar, L.K.C. de Souza, Pyrolysis of acai seed biomass: Kinetics and thermodynamic parameters using thermogravimetric analysis, Bioresour. Technol. Rep. 12 (2020) 100553. [67] F.J. Chen, F.X. Zhang, S.L. Yang, H.L. Liu, H. Wang, J.H. Hu, Investigation of pyrolysis kinetics, thermodynamics, product characteristics and reaction mechanism of rubber seed oil, Energy Convers. Manag. 244 (2021) 114535. [68] A. Nawaz, R.K. Mishra, S. Sabbarwal, P. Kumar, Studies of physicochemical characterization and pyrolysis behavior of low-value waste biomass using Thermogravimetric analyzer: Evaluation of kinetic and thermodynamic parameters, Bioresour. Technol. Rep. 16 (2021) 100858. [69] I. Ali, H. Bahaitham, R. Naebulharam, A comprehensive kinetics study of coconut shell waste pyrolysis, Bioresour. Technol. 235 (2017) 1-11. [70] D. Mallick, M.K. Poddar, P. Mahanta, V.S. Moholkar, Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis, Bioresour. Technol. 261 (2018) 294-305. [71] P. Launer, B. Arkles, Infrared analysis of organosilicon compounds, Silicon Compounds: Silanes & Silicones, Edition: 3rd,Gelest Inc. Morrisville, PA, USA, 2013. [72] S.M. Alshehri, A. Al-Fawaz, T. Ahamad, Thermal kinetic parameters and evolved gas analysis (TG-FTIR-MS) for thiourea-formaldehyde based polymer metal complexes, J. Anal. Appl. Pyrolysis 101 (2013) 215-221. [73] Y.T. Wang, S.F. Liao, K. Shang, M.J. Chen, J.Q. Huang, Y.Z. Wang, D.A. Schiraldi, Efficient Approach to Improving the Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Piperazine-Modified Ammonium Polyphosphate, ACS Appl. Mater. Interfaces 7 (3) (2015) 1780-1786. [74] H.B. Chen, Y.Z. Wang, D.A. Schiraldi, Preparation and flammability of poly(vinyl alcohol) composite aerogels, ACS Appl. Mater. Interfaces 6 (9) (2014) 6790-6796. [75] P.B. Sarawade, J.K. Kim, A. Hilonga, D.V. Quang, H.T. Kim, Synthesis of hydrophilic and hydrophobic xerogels with superior properties using sodium silicate, Microporous Mesoporous Mater. 139 (1-3) (2011) 138-147. |
[1] | Xingjuan Liang, Dehua Xu, Zhengjuan Yan, Jingxu Yang, Xinlong Wang, Zhiye Zhang, Jingli Wu, Honggang Zhen. Solid-liquid phase equilibrium for the system ammonium polyphosphate-urea ammonium nitrate-potassium chloride-water at 273.2 K [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 131-142. |
[2] | Eileen Katherine Coronado-Aldana, Cindy Lizeth Ferreira-Salazar, Nubia Yineth Piñeros-Castro, Rubén Vázquez-Medina, Felipe A. Perdomo. Thermodynamic analysis, synthesis, characterization, and evaluation of 1-ethyl-3-methylimidazolium chloride: Study of its effect on pretreated rice husk [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 143-154. |
[3] | Yuehua Liu, Lili Chen, Shoujun Liu, Song Yang, Ju Shangguan. Role of iron-based catalysts in reducing NOx emissions from coal combustion [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 1-8. |
[4] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[5] | Yun-Zhang Liu, Lu-Yao Zhang, Dan He, Li-Zhen Chen, Zi-Shuai Xu, Jian-Long Wang. Solubility measurement, correlation and thermodynamic properties of 2, 3, 4-trichloro-1, 5-dinitrobenzene in fifteen mono-solvents at temperatures from 278.15 to 323.15 K [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 224-233. |
[6] | Haodi Tan, Minjiao Yang, Yingquan Chen, Xu Chen, Francesco Fantozzi, Pietro Bartocci, Roman Tschentscher, Federica Barontini, Haiping Yang, Hanping Chen. Preparation of aromatic hydrocarbons from catalytic pyrolysis of digestate [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 1-9. |
[7] | Yi Shen, Xinshuang Chu, Qinghong Shi. Unraveling structure and performance of protein a ligands at liquid–solid interfaces: A multi-techniques analysis [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 232-239. |
[8] | Xueguang Li, Mengyan Yu, Changfa Zhang, Xiangtong Li, Guangqing Liu, Jianjun Dai, Chunbao Zhou, Yang Liu, Jie Fu, Yingwen Zhang, Bang Yao. Co-pyrolysis of soybean soapstock with iron slag/aluminum scrap, and characterization and analysis of their products [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 25-36. |
[9] | Zhiwei Wang, Yu Zhang, Zhi Zhang, Daowei Zhou, Zhikai Cao, Yong Sha. Investigation on catalytic distillation for ethyl acetate production with different catalytic packing structures [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 63-72. |
[10] | Yingjie Song, Shuqi Zhong, Yingjiao Li, Kun Dong, Yong Luo, Guangwen Chu, Haikui Zou, Baochang Sun. Study on the catalytic degradation of sodium lignosulfonate to aromatic aldehydes over nano-CuO: Process optimization and reaction kinetics [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 300-309. |
[11] | Hongbo Song, Wei Wang, Jiachen Sun, Xianhui Wang, Xianhua Zhang, Sai Chen, Chunlei Pei, Zhi-Jian Zhao. Chemical looping oxidative propane dehydrogenation controlled by oxygen bulk diffusion over FeVO4 oxygen carrier pellets [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 409-420. |
[12] | Linyang Wang, Qiang Wang, Yongqi Liu, Qiuxiang Yao, Ming Sun, Xiaoxun Ma. Catalytic conversion of asphaltenes to BTXN using metal-loaded modified HZSM-5 [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 253-264. |
[13] | Kai Zhang, Fangming Xue, Zhiqiang Wang, Xingxing Cheng. Research on prediction model of formation temperature of ammonium bisulfate in air preheater of coal-fired power plant [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 202-210. |
[14] | Hualiang An, Rui Wang, Wenhao Wang, Daolai Sun, Xinqiang Zhao, Yanji Wang. A core–shell Ni/SiO2@TiO2 catalyst for highly selective one-step synthesis of 2-propylheptanol from n-pentanal [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 104-112. |
[15] | Haoyu Yao, Dongxia Yan, Xingmei Lu, Qing Zhou, Yinan Bao, Junli Xu. Solubility determination and thermodynamic modeling of bis-2-hydroxyethyl terephthalate (BHET) in different solvents [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 294-300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||