Chinese Journal of Chemical Engineering ›› 2023, Vol. 58 ›› Issue (6): 282-290.DOI: 10.1016/j.cjche.2022.10.016
Previous Articles Next Articles
Jianhui Zhou1, Xin Lai2, Jianfeng Hu2, Haijie Qi1, Shan Liu1, Zhengguo Zhang2
Received:
2022-05-27
Revised:
2022-10-25
Online:
2023-08-31
Published:
2023-06-28
Contact:
Jianfeng Hu,E-mail:cejfhu@scut.edu.cn
Supported by:
Jianhui Zhou1, Xin Lai2, Jianfeng Hu2, Haijie Qi1, Shan Liu1, Zhengguo Zhang2
通讯作者:
Jianfeng Hu,E-mail:cejfhu@scut.edu.cn
基金资助:
Jianhui Zhou, Xin Lai, Jianfeng Hu, Haijie Qi, Shan Liu, Zhengguo Zhang. Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage[J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 282-290.
Jianhui Zhou, Xin Lai, Jianfeng Hu, Haijie Qi, Shan Liu, Zhengguo Zhang. Design of a graphene oxide@melamine foam/polyaniline@erythritol composite phase change material for thermal energy storage[J]. 中国化学工程学报, 2023, 58(6): 282-290.
[1] A. S. Soliman, L. Xu, J.G. Dong, P. Cheng, A novel heat sink for cooling photovoltaic systems using convex/concave dimples and multiple PCMs, Appl. Therm. Eng. 215 (2022) 119001. [2] J. Kim, J. Lee, C. Song, J. Yun, W.S. Choi, Enhanced thermal performances of PCM heat sinks enabled by layer-by-layer-assembled carbon nanotube-polyethylenimine functional interfaces, Energy Convers. Manag. 266(2022)115853. [3] G. Hekimoğlu, M. Nas, M. Ouikhalfan, A. Sarı, V.V. Tyagi, R.K. Sharma, Ş. Kurbetci, T.A. Saleh, Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: thermal energy storage and mechanical properties, Energy 219 (2021) 119588. [4] A. Sarı, T.A. Saleh, G. Hekimoğlu, V.V. Tyagi, R.K. Sharma, Microencapsulated heptadecane with calcium carbonate as thermal conductivity-enhanced phase change material for thermal energy storage, J. Mol. Liq. 328 (2021) 115508. [5] G. Hekimoğlu, A. Sarı, T. Kar, S. Keleş, K. Kaygusuz, N. Yıldırım, V.V. Tyagi, R.K. Sharma, T.A. Saleh, Carbonized waste hazelnut wood-based shape-stable composite phase change materials for thermal management implementations, Int. J. Energy Res. 45 (7) (2021) 10271-10284. [6] T.A. Saleh, Nanomaterials: classification, properties, and environmental toxicities, Environ. Technol. Innov. 20 (2020) 101067. [7] Z.D. Tang, H.Y. Gao, X. Chen, Y.F. Zhang, A. Li, G. Wang, Advanced multifunctional composite phase change materials based on photo-responsive materials, Nano Energy 80 (2021) 105454. [8] J.L. Tao, J.D. Luan, Y. Liu, D.Y. Qu, Z. Yan, X. Ke, Technology development and application prospects of organic-based phase change materials: an overview, Renew. Sustain. Energy Rev. 159 (2022) 112175. [9] P.P. Zhao, P. Lu, Z.Y. Zhao, S.W. Chen, X.Y. Li, C. Deng, Y.Z. Wang, Aromatic Schiff Base-Based Polymeric Phase Change Materials for Safe, Leak-Free, and Efficient Thermal Energy Management, Chem. Eng. J. 437 (2022) 135461. [10] S.B. Xi, L.L. Wang, H.Q. Xie, W. Yu, Superhydrophilic modified elastomeric RGO aerogel based hydrated salt phase change materials for effective solar thermal conversion and storage, ACS Nano 16 (3) (2022) 3843-3851. [11] X.X. Yan, Y.H. Feng, L. Qiu, X.X. Zhang, Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials, Energy 233 (2021) 121158. [12] X.X. Yan, H.B. Zhao, Y.H. Feng, L. Qiu, L. Lin, X.X. Zhang, T. Ohara, Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials, Compos. B Eng. 228 (2022) 109435. [13] S.L. Shen, S.J. Tan, S. Wu, C. Guo, J. Liang, Q. Yang, G.Y. Xu, J. Deng, The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials, Energy Convers. Manag. 157 (2018) 41-48. [14] Q. Zhang, Z.L. Luo, Q.L. Guo, G.H. Wu, Preparation and thermal properties of short carbon fibers/erythritol phase change materials, Energy Convers. Manag. 136 (2017) 220-228. [15] C. Ma, J. Wang, Y. Wu, Y.C. Wang, Z.J. Ji, S. Xie, Characterization and thermophysical properties of erythritol/expanded graphite as phase change material for thermal energy storage, J. Energy Storage 46 (2022) 103864. [16] N. Sheng, K.X. Dong, C.Y. Zhu, T. Akiyama, T. Nomura, Thermal conductivity enhancement of erythritol phase change material with percolated aluminum filler, Mater. Chem. Phys. 229 (2019) 87-91. [17] S. Yang, X.F. Shao, H. Shi, J.Q. Luo, L.W. Fan, Bubble-injection-enabled significant reduction of supercooling and controllable triggering of crystallization of erythritol for medium-temperature thermal energy storage, Solar Energy Materials and Solar Cells, 236(2022)111538 [18] N.R. Feng, Z. Kang, D.Y. Hu, Shape-stabilized and antibacterial composite phase change materials based on wood-based cellulose micro-framework, erythritol-urea or erythritol-thiourea for thermal energy storage, Sol. Energy 223 (2021) 19-32. [19] H.Y. Zhang, J.X. Cheng, Q.B. Wang, D.B. Xiong, J.L. Song, Z.F. Tang, X.D. Liu, The graphite foam/erythritol composites with ultrahigh thermal conductivity for medium temperature applications, Sol. Energy Mater. Sol. Cells 230 (2021) 111135. [20] M.D. Yuan, C. Xu, T.Y. Wang, T.Y. Zhang, X.Y. Pan, F. Ye, Supercooling suppression and crystallization behaviour of erythritol/expanded graphite as form-stable phase change material, Chem. Eng. J. 413 (2021) 127394. [21] J.L. Zeng, S.L. Sun, L. Zhou, Y.H. Chen, L. Shu, L.P. Yu, L. Zhu, L.B. Song, Z. Cao, L.X. Sun, Preparation, morphology and thermal properties of microencapsulated palmitic acid phase change material with polyaniline shells, J. Therm. Anal. Calorim. 129 (3) (2017) 1583-1592. [22] M. George, A.K. Pandey, N.A. Rahim, V.V. Tyagi, S. Shahabuddin, R. Saidur, Long-term thermophysical behavior of paraffin wax and paraffin wax/polyaniline (PANI) composite phase change materials, J. Energy Storage 31 (2020) 101568. [23] J.L. Zeng, F.R. Zhu, S.B. Yu, Z.L. Xiao, W.P. Yan, S.H. Zheng, L. Zhang, L.X. Sun, Z. Cao, Myristic acid/polyaniline composites as form stable phase change materials for thermal energy storage, Sol. Energy Mater. Sol. Cells 114 (2013) 136-140. [24] Y.H. Chen, L.M. Jiang, Y. Fang, L. Shu, Y.X. Zhang, T. Xie, K.Y. Li, N. Tan, L. Zhu, Z. Cao, J.L. Zeng, Preparation and thermal energy storage properties of erythritol/polyaniline form-stable phase change material, Sol. Energy Mater. Sol. Cells 200 (2019) 109989. [25] B. Yang, N. Wang, Y.W. Song, J.M. Liu, Study on the improvement of supercooling and thermal properties of erythritol-based phase change energy storage materials, Renew. Energy 175 (2021) 80-97. [26] H.Q. Liu, K.Y. Sun, X.Y. Shi, H.N. Yang, H.S. Dong, Y. Kou, P. Das, Z.S. Wu, Q. Shi, Two-dimensional materials and their derivatives for high performance phase change materials: emerging trends and challenges, Energy Storage Mater. 42 (2021) 845-870. [27] Y.R. Shi, M.A. Gerkman, Q.F. Qiu, S.R. Zhang, G.G.D. Han, Sunlight-activated phase change materials for controlled heat storage and triggered release, J. Mater. Chem. A 9 (15) (2021) 9798-9808. [28] M.D. Yuan, Y.X. Ren, C. Xu, F. Ye, X.Z. Du, Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage, Renew. Energy 136 (2019) 211-222. [29] Y. Du, H.W. Huang, X.P. Hu, S. Liu, X.X. Sheng, X.L. Li, X. Lu, J.P. Qu, Melamine foam/polyethylene glycol composite phase change material synergistically modified by polydopamine/MXene with enhanced solar-to-thermal conversion, Renew. Energy 171 (2021) 1-10. [30] F. Xue, X.Z. Jin, W.Y. Wang, X.D. Qi, J.H. Yang, Y. Wang, Melamine foam and cellulose nanofiber co-mediated assembly of graphene nanoplatelets to construct three-dimensional networks towards advanced phase change materials, Nanoscale 12 (6) (2020) 4005-4017. [31] H.Y. Wu, R.T. Chen, Y.W. Shao, X.D. Qi, J.H. Yang, Y. Wang, Novel flexible phase change materials with mussel-inspired modification of melamine foam for simultaneous light-actuated shape memory and light-to-thermal energy storage capability, ACS Sustain. Chem. Eng. 7 (15) (2019) 13532-13542. [32] J.L. Zeng, Y.H. Chen, L. Shu, L.P. Yu, L. Zhu, L.B. Song, Z. Cao, L.X. Sun, Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells 178 (2018) 84-90. [33] H.Y. Wu, S.T. Li, Y.W. Shao, X.Z. Jin, X.D. Qi, J.H. Yang, Z.W. Zhou, Y. Wang, Melamine foam/reduced graphene oxide supported form-stable phase change materials with simultaneous shape memory property and light-to-thermal energy storage capability, Chem. Eng. J. 379 (2020) 122373. [34] H.Y. Wu, S. Deng, Y.W. Shao, J.H. Yang, X.D. Qi, Y. Wang, Multiresponsive shape-adaptable phase change materials with cellulose nanofiber/graphene nanoplatelet hybrid-coated melamine foam for light/electro-to-thermal energy storage and utilization, ACS Appl. Mater. Interfaces 11 (50) (2019) 46851-46863. [35] Y.W. Shao, W.W. Hu, M.H. Gao, Y.Y. Xiao, T. Huang, N. Zhang, J.H. Yang, X.D. Qi, Y. Wang, Flexible MXene-coated melamine foam based phase change material composites for integrated solar-thermal energy conversion/storage, shape memory and thermal therapy functions, Compos. A Appl. Sci. Manuf. 143 (2021) 106291. [36] F. Xue, C.H. Huang, X.D. Qi, J.H. Yang, C.S. Zhao, Y.Z. Lei, Y. Wang, Largely improved thermal conductivity and flame resistance of phase change materials based on three-dimensional melamine foam/phosphorous cellulose/graphite nanoplatelets network with multiple energy transition abilities, Compos. A Appl. Sci. Manuf. 156 (2022) 106898. [37] F. Xue, Y. Lu, X.D. Qi, J.H. Yang, Y. Wang, Melamine foam-templated graphene nanoplatelet framework toward phase change materials with multiple energy conversion abilities, Chem. Eng. J. 365 (2019) 20-29. [38] Y.S. Wang, J. Luo, S. Wang, Q. Ma, D.Q. Zou, Shape-stabilized phase change material with internal coolant channel coupled with phase change emulsion for power battery thermal management, Chem. Eng. J. 438 (2022) 135648. [39] E. Shamsaei, F. Basquiroto de Souza, A. Fouladi, K. Sagoe-Crentsil, W.H. Duan, Graphene oxide-based mesoporous calcium silicate hydrate sandwich-like structure: synthesis and application for thermal energy storage, ACS Appl. Energy Mater. 5 (1) (2022) 958-969. [40] F.K. Ma, L.Q. Liu, L.Q. Ma, Q. Zhang, J.N. Li, M. Jing, W.J. Tan, Enhanced thermal energy storage performance of hydrous salt phase change material via defective graphene, J. Energy Storage 48 (2022) 104064. [41] T.A. Saleh, Carbon nanotube-incorporated alumina as a support for MoNi catalysts for the efficient hydrodesulfurization of thiophenes, Chem. Eng. J. 404 (2021) 126987. [42] T.A. Saleh, Simultaneous adsorptive desulfurization of diesel fuel over bimetallic nanoparticles loaded on activated carbon, J. Clean. Prod. 172 (2018) 2123-2132. [43] Y. Wang, S. Li, T. Zhang, D.Y. Zhang, H. Ji, Supercooling suppression and thermal behavior improvement of erythritol as phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells 171 (2017) 60-71. [44] S.Y. Chai, K.Y. Sun, D.H. Zhao, Y. Kou, Q. Shi, Form-stable erythritol/HDPE composite phase change material with flexibility, tailorability, and high transition enthalpy, 2(11)(2020)4464-4471. [45] Q.J. Cheng, X.L. Cheng, X. Wang, P.X. Du, C.Z. Liu, Z.H. Rao, Supercooling regulation and thermal property optimization of erythritol as phase change material for thermal energy storage, J. Energy Storage 52 (2022) 105000. [46] T. A. Saleh, M. Tuzen, A. Sarı, Polyamide magnetic palygorskite for the simultaneous removal of Hg (II) and methyl mercury; with factorial design analysis, J. Environ. Manage. 211 (2018) 323-333. [47] S.O. Adio, M.H. Omar, M. Asif, T.A. Saleh, Arsenic and selenium removal from water using biosynthesized nanoscale zero-valent iron: a factorial design analysis, Process. Saf. Environ. Prot. 107 (2017) 518-527. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 26-36. |
[2] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[3] | Ming Liu, Ying Li, Rui Wang, Guoqiang Shao, Pengpeng Lv, Jun Li, Qingshan Zhu. Uniform deposition of ultra-thin TiO2 film on mica substrate by atmospheric pressure chemical vapor deposition: Effect of precursor concentration [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 99-107. |
[4] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[5] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 124-136. |
[6] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[7] | Chao Yang, Zhelin Su, Yeshuang Wang, Huiling Fan, Meisheng Liang, Zhaohui Chen. Insight into the effect of gel drying temperature on the structure and desulfurization performance of ZnO/SiO2 adsorbents [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 233-241. |
[8] | Jianhui Zhou, Guohao Du, Jianfeng Hu, Xin Lai, Shan Liu, Zhengguo Zhang. The establishment of Boron nitride@sodium alginate foam/polyethyleneglycol composite phase change materials with high thermal conductivity, shape stability, and reusability [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 11-21. |
[9] | Qingyue Han, Suqing Wang, Wenhan Kong, Bing Ji, Haihui Wang. Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 257-263. |
[10] | Jiacheng Chen, Jincheng Wang, Shuhong Li, Kailing Xiang, Shiqiang Song. Pyridine terminated polyurethane dendrimer/chlorinated butyl rubber nanocomposites with excellent mechanical and damping properties [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 211-221. |
[11] | Peng Yang, Shengzhe Jia, Yan Wang, Zongqiu Li, Songgu Wu, Jingkang Wang, Junbo Gong. Dissolution behavior, thermodynamic and kinetic analysis of malonamide by experimental measurement and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 260-269. |
[12] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[13] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[14] | Yue Liang, Wenjuan Wang, Yan Sun, Xiaoyan Dong. Insights into the cross-amyloid aggregation of Aβ40 and its N-terminal truncated peptide Aβ11-40 affected by epigallocatechin gallate [J]. Chinese Journal of Chemical Engineering, 2022, 45(5): 284-293. |
[15] | Iman Farirzadeh, Majid Riahi Samani, Davood Toghraie. Lead removal from aqueous medium using fruit peels and polyaniline composites in aqueous and non-aqueous solvents in the presence of polyethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 253-259. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 53
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 132
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||