[1] R. M. Murphy, B. S. Kendrick, Protein misfolding and aggregation, Biotechnol. Progr. 23 (2007) 548-552 [2] C. A. Ross, M. A. Poirier, Protein aggregation and neurodegenerative disease, Nat. Med. 10 Suppl (2004) S10-S17 [3] J. Hardy, D. J. Selkoe, The amyloid hypothesis of Alzheimer's disease-progress and problems on the road to therapeutics, Science 297 (2002) 353-356 [4] V. Fodera, F. Librizzi, M. Groenning, M. Van De Weert, M. Leone, Secondary nucleation and accessible surface in insulin amyloid fibril formation, J. Phys. Chem. B 112 (2008) 3853-3858 [5] L. Xu, Y. Chen, X. Wang, Assembly of amyloid β peptides in the presence of fibril seeds:one-pot coarse-grained molecular dynamics simulations, J. Phys. Chem. B 118 (31) (2014) 9238-9246 [6] P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schlossmacher, J. Whaley, C. Swindlehurst, R. Mccormack, R. Wolfert, D. Selkoe, I. Lieberburg, D. Schenk, Isolation and quantification of soluble Alzheimer's β-peptide form biological fluids, Nature 359 (1992) 325-327 [7] L. Miravalle, M. Calero, M. Takao, A. E. Roher, B. Ghetti, R. Vidal, Amino-terminally truncated Aβ peptide species are the main component of cotton wool plaques, Biochemistry 44 (2005) 10810-10821 [8] D. L. Milller, I. A. Papayannopoulos, J. Styles, S. A. Bobin, Y. Y. Lin, K. Biemann, K. Iqbal, Peptide compositions of the cerebrovascular and senile plaque core amyloid deposits of Alzheimer's disease, Arch. Biochem. Biophys. 301 (1993) 41-52 [9] J. Naslund, A. Schierhorn, U. Hellman, L. Lannfelt, A. D. Roses, L. O. Tjernberg, J. Silberring, S. E. Gandy, B. Winblad, P. Greengard, C. Nordtedt, L. Terenius, Relative abundance of Alzheimer Aβ amyloid peptide variants in AD and normal aging P. Natl. Acad. Sci. 91 (1994) 8378-8382 [10] K. Liu, I. Solano, D. Mann, C. Lemere, M. Mercken, J. Q. Trojanowski, V. M. Lee, Characterization of Aβ11-40/42 peptide deposition in Alzheimer's disease and young Down's syndrome brains:implication of N-terminally truncated Aβ species in the pathogenesis of Alzheimer's disease, Acta Neuropathol. 112 (2) (2006) 163-174 [11] J. D. Barritt, N. D. Younan, J. H. Viles, N-terminally truncated amyloid-β(11-40/42) cofibrillizes with its full-length counterpart:implications for Alzheimer's disease, Angew. Chem. Int. Edtt. 56 (33) (2017) 9816-9819 [12] X. Hao, J. Zheng, Y. Sun, X. Dong, Seeding and cross-seeding aggregations of Aβ40 and its N-terminal-truncated peptide Aβ11-40, Langmuir 35 (7) (2019) 2821-2831 [13] T. A. Mirzabekov, M. Lin, B. L. Kagan, Pore formation by the cytotoxic islet amyloid peptide amylin, J. Biol. Chem. 271 (1996) 1988-1992 [14] H. Ogi, Y. Fukunishi, T. Yanagida, H. Yagi, Y. Goto, M. Fukushima, K. Uesugi, M. Hirao, Seed-dependent deposition behavior of Aβ peptides studied with wireless quartz-crystal-microbalance biosensor, Anal. Chem. 83 (12) (2011) 4982-4988 [15] K. A. Marx, Quartz crystal microbalance:a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface, Biomacromolecules 4 (2003) 1099-1120 [16] D. J. Selkoe, J. Hardy, The amyloid hypothesis of Alzheimer's disease at 25 years, EMBO Mol. Med. 8 (6) (2016) 595-608 [17] X. Han, G. He, Toward a rational design to regulate β-amyloid fibrillation for Alzheimer's disease treatment, ACS Chem. Neurosci. 9 (2) (2018) 198-210 [18] S. H. Wang, X. Y. Dong, Y. Sun, Thermodynamic analysis of the molecular interactions between amyloid β-protein fragments and (-)-epigallocatechin-3-gallate, J. Phys. Chem. B 116 (20) (2012) 5803-5809 [19] J. Bieschke, J. Russ, R. P. Friedrich, D. E. Ehrnhoefer, H. Wobst, K. Neugebauer, E. E. Wanker, EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity, Proc. Natl. Acad. Sci.107 (17) (2010) 7710-7715 [20] D. E. Ehrnhoefer, J. Bieschke, A. Boeddrich, M. Herbst, L. Masino, R. Lurz, S. Engemann, A. Pastore, E. E. Wanker, EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers, Nat. Struct. Mol. Biol. 15 (6) (2008) 558-566 [21] S. Chan, S. Kantham, V. M. Rao, M. K. Palanivelu, H. L. Pham, P. N. Shaw, R. P. Mcgeary, B. P. Ross, Metal chelation, radical scavenging and inhibition of Aβ(42) fibrillation by food constituents in relation to Alzheimer's disease, Food Chem. 199 (2016) 185-194 [22] S. A. Mandel, T. Amit, L. Kalfon, L. Reznichenko, M. B. H. Youdim, Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins, J. Nutr. 138 (2008) 1578S-1583S [23] N. Dragicevic, A. Smith, X. Lin, F. Yuan, N. Copes, V. Delic, J. Tan, C. Cao, R. D. Shytle, P. C. Bradshaw, Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer's amyloid-induced mitochondrial dysfunction, J. Alzheimers Dis. 26 (3) (2011) 507-521 [24] Q. Wang, N. Shah, J. Zhao, C. Wang, C. Zhao, L. Liu, L. Li, F. Zhou, J. Zheng, Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers, Phys. Chem. Chem. Phys. 13 (33) (2011) 15200-15210 [25] C. Streich, L. Akkari, C. Decker, J. Bormann, C. Rehbock, A. Muller-Schiffmann, F. C. Niemeyer, L. Nagel-Steger, D. Willbold, B. Sacca, C. Korth, T. Schrader, S. Barcikowski, Characterizing the effect of multivalent conjugates composed of Aβ-specific ligands and metal nanoparticles on neurotoxic fibrillar aggregation, ACS Nano 10 (8) (2016) 7582-7597 [26] C. Wang, L. Xu, F. Cheng, H. Wang, L. Jia, Curcumin induces structural change and reduces the growth of amyloid-β fibrils:a QCM-D study, RSC Adv. 5 (38) (2015) 30197-30205 [27] M. V. Voinova, M. Rodahl, M. Jonson, B. Kasemo, Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces:continuum mechanics approach, Phys. Scr. 59 (1999) [28] J. D. Barritt, J. H. Viles, Truncated amyloid-β(11-40/42) from Alzheimer disease binds Cu2+ with a femtomolar affinity and influences fiber assembly, J. Biol. Chem. 290 (46) (2015) 27791-27802 [29] T. Weiffert, G. Meisl, P. Flagmeier, S. De, C. J. R. Dunning, B. Frohm, H. Zetterberg, K. Blennow, E. Portelius, D. Klenerman, C. M. Dobson, T. P. J. Knowles, S. Linse, Increased secondary nucleation underlies accelerated aggregation of the four-residue N-terminally truncated Aβ42 species Aβ5-42, ACS Chem. Neurosci. 10 (5) (2019) 2374-2384 [30] D. Meral, B. Urbanc, Discrete molecular dynamics study of oligomer formation by N-terminally truncated amyloid β-protein, J. Mol. Biol. 425 (12) (2013) 2260-2275 [31] M. M. Murray, S. L. Bernstein, V. Nyugen, M. M. Condron, D. B. Teplow, M. T. Bowers, Amyloid β protein:Aβ40 inhibits Aβ42 oligomerization, J. Am. Chem. Soc. 131 (2009) 6316-6137 [32] J. Seeliger, K. Weise, N. Opitz, R. Winter, The effect of Aβ on IAPP aggregation in the presence of an isolated β-cell membrane, J. Mol. Biol. 421 (2-3) (2012) 348-363 [33] X. Ge, Y. Yang, Y. Sun, W. Cao, F. Ding, Islet amyloid polypeptide promotes amyloid-beta aggregation by binding-induced helix-unfolding of the amyloidogenic core, ACS Chem. Neurosci. 9 (5) (2018) 967-975 [34] A. I. Ilitchev, M. J. Giammona, C. Olivas, S. L. Claud, K. L. Lazar Cantrell, C. Wu, S. K. Buratto, M. T. Bowers, Hetero-oligomeric amyloid assembly and mechanism:prion fragment PrP(106-126) catalyzes the islet amyloid polypeptide β-hairpin, J. Am. Chem. Soc. 140 (30) (2018) 9685-9695 [35] K. Pauwels, T. L. Williams, K. L. Morris, W. Jonckheere, A. Vandersteen, G. Kelly, J. Schymkowitz, F. Rousseau, A. Pastore, L. C. Serpell, K. Broersen, Structural basis for increased toxicity of pathological Aβ42:Aβ40 ratios in Alzheimer disease, J. Biol. Chem. 287 (8) (2012) 5650-5660 [36] C. A. Soldner, H. Sticht, A. H. C. Horn, Role of the N-terminus for the stability of an amyloid-β fibril with three-fold symmetry, PLoS One 12 (10) (2017) e0186347 [37] Y. Miura, K. Yasuda, K. Yamamoto, M. Koike, Y. Nishida, K. Kobayashi, Inhibition of Alzheimer amyloid aggregation with sulfated glycopolymers, Biomacromolecules 8 (2007) 2129-2134 [38] K. Matsuzaki, K. Kato, K. Yanagisawa, Aβ polymerization through interaction with membrane gangliosides, Biochim. Biophys. Acta 1801 (8) (2010) 868-877 [39] P. Arosio, T. P. Knowles, S. Linse, On the lag phase in amyloid fibril formation, Phys. Chem. Chem. Phys. 17 (12) (2015) 7606-7618 [40] S. T. Ngo, D. T. Truong, N. M. Tam, M. T. Nguyen, EGCG inhibits the oligomerization of amyloid beta (16-22) hexamer:theoretical studies, J. Mol. Graph. Model. 76 (2017) 1-10 [41] S. J. Hyung, A. S. Detoma, J. R. Brender, S. Lee, S. Vivekanandan, A. Kochi, J. S. Choi, A. Ramamoorthy, B. T. Ruotolo, M. H. Lim, Insights into antiamyloidogenic properties of the green tea extract (-)-epigallocatechin-3-gallate toward metal-associated amyloid-β species, Proc. Natl. Acad. Sci. 110 (10) (2013) 3743-3748 [42] Q. Chen, S. Xu, Q. Liu, J. Masliyah, Z. Xu, QCM-D study of nanoparticle interactions, Adv. Colloid Interface 233 (2016) 94-114 [43] S. H. Wang, F. F. Liu, X. Y. Dong, Y. Sun, Thermodynamic analysis of the molecular interactions between amyloid β- peptide 42 and (-)-epigallocatechin-3-gallate, J. Phys. Chem. B 114 (2010) 11576-11583 [44] P. D. Ross, S. Subramanian, Thermodynamics of protein association reactions:forces contributing to stability, Biochemistry 20 (11) (1981) 3096-3102 [45] J. M. Sturtevant, Heat capacity and entropy changes in processes involving proteins, P. Natl. Acad. Sci. 74 (6) (1977) 2236-2240 [46] J. M. Lopez Del Amo, U. Fink, M. Dasari, G. Grelle, E. E. Wanker, J. Bieschke, B. Reif, Structural properties of EGCG-induced, nontoxic Alzheimer's disease Aβ oligomers, J. Mol. Biol. 421 (4-5) (2012) 517-524 [47] J. Wang, T. Yamamoto, J. Bai, S. J. Cox, K. J. Korshavn, M. Monette, A. Ramamoorthy, Real-time monitoring of the aggregation of Alzheimer's amyloid-β via(1)H magic angle spinning NMR spectroscopy, Chem. Commun. 54 (16) (2018) 2000-2003 |