[1] M. Qiao, G.G. Ying, A.C. Singer, Y.G. Zhu, Review of antibiotic resistance in China and its environment, Environ. Int. 110(2018) 160–172. [2] Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance, Environ. Sci. Technol. 49(11) (2015) 6772–6782. [3] X.D. Zhu, Y.J. Wang, R.J. Sun, D.M. Zhou, Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2, Chemosphere 92(8) (2013) 925–932. [4] Y.D. Liu, S.J. Zhou, F. Yang, H. Qin, Y. Kong, Degradation of phenol in industrial wastewater over the F-Fe/TiO2 photocatalysts under visible light illumination, Chin. J. Chem. Eng. 24(12) (2016) 1712–1718. [5] N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. A: Chem. 162(2–3) (2004) 317–322. [6] A. Kambur, G.S. Pozan, I. Boz, Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles, Appl. Catal. B: Environ. 115–116(2012) 149–158. [7] G.C. Xi, B. Yue, J.Y. Cao, J.H. Ye, Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis, Chemistry 17(18) (2011) 5145–5154. [8] M. Saeed, M. Muneer, N. Mumtaz, M. Siddique, N. Akram, M. Hamayun, AgCo3O4: Synthesis, characterization and evaluation of its photo-catalytic activity towards degradation of rhodamine B dye in aqueous medium, Chin. J. Chem. Eng. 26(6) (2018) 1264–1269. [9] W. Zhu, F.Q. Sun, R. Goei, Y. Zhou, Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole, Appl. Catal. B: Environ. 207(2017) 93–102. [10] M. Ahmadi, H. Ramezani Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite, J. Environ. Manag. 186(2017) 55–63. [11] J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, G-C3N4-based heterostructured photocatalysts, Adv. Energy Mater. 8(3) (2018) 1701503. [12] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1) (2009) 76–80. [13] J.L. Zhang, Z. Ma, Porous g-C3N4 with enhanced adsorption and visible-light photocatalytic performance for removing aqueous dyes and tetracycline hydrochloride, Chin. J. Chem. Eng. 26(4) (2018) 753–760. [14] F.M. Zhang, J.L. Sheng, Z.D. Yang, X.J. Sun, H.L. Tang, M. Lu, H. Dong, F.C. Shen, J. Liu, Y.Q. Lan, Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors, Angew. Chem. Int. Ed. Engl. 57(37) (2018) 12106–12110. [15] F. Guo, S.Z. Yang, Y. Liu, P. Wang, J.E. Huang, W.Y. Sun, Size engineering of metal-organic framework MIL-101(Cr)-Ag hybrids for photocatalytic CO2 reduction, ACS Catal. 9(9) (2019) 8464–8470. [16] M. Wang, J.X. Liu, C.M. Guo, X.S. Gao, C.H. Gong, Y. Wang, B. Liu, X.X. Li, G.G. Gurzadyan, L.C. Sun, Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: the role of the morphology effect, J. Mater. Chem. A 6(11) (2018) 4768–4775. [17] B.C. Ma, S. Ghasimi, K. Landfester, F. Vilela, K.A.I. Zhang, Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications, J. Mater. Chem. A 3(31) (2015) 16064–16071. [18] Z.J. Wang, S. Ghasimi, K. Landfester, K.A. Zhang, Molecular structural design of conjugated microporous poly(benzooxadiazole) networks for enhanced photocatalytic activity with visible light, Adv. Mater. 27(40) (2015) 6265–6270. [19] R.S. Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M.A. Zwijnenburg, D.J. Adams, A.I. Cooper, Tunable Organic Photocatalysts for Visible-Light-Driven Hydrogen Evolution, J. Am. Chem. Soc. 137(2015) 3265–3270. [20] C.H. Dai, B. Liu, Conjugated polymers for visible-light-driven photocatalysis, Energy Environ. Sci. 13(1) (2020) 24–52. [21] Y.L. Wong, J.M. Tobin, Z. Xu, F. Vilela, Conjugated porous polymers for photocatalytic applications, J. Mater. Chem. A 4(48) (2016) 18677–18686. [22] Z.A. Lan, G.G. Zhang, X. Chen, Y.F. Zhang, K.A. Zhang, X.C. Wang, Reducing the exciton binding energy of donor-acceptor-based conjugated polymers to promote charge-induced reactions, Angew. Chem. Int. Ed. Engl. 58(30) (2019) 10236–10240. [23] C. Yang, W. Huang, L.C. Da Silva, K.A.I. Zhang, X.C. Wang, Functional conjugated polymers for CO2 reduction using visible light, Chem. Eur. J. 24(66) (2018) 17454–17458. [24] K. Zhang, D. Kopetzki, P.H. Seeberger, M. Antonietti, F. Vilela, Surface area control and photocatalytic activity of conjugated microporous poly (benzothiadiazole) networks, Angew. Chem. Int. Ed. Engl. 52(5) (2013) 1432–1436. [25] J. Yu, X.Q. Sun, X.X. Xu, C. Zhang, X.M. He, Donor-acceptor type triazine-based conjugated porous polymer for visible-light-driven photocatalytic hydrogen evolution, Appl. Catal. B: Environ. 257(2019) 117935. [26] H.J. Hou, X.H. Zhang, D.K. Huang, X. Ding, S.Y. Wang, X.L. Yang, S.Q. Li, Y.G. Xiang, H. Chen, Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunction for visible-light-driven H2 production and pollutant removal, Appl. Catal. B: Environ. 203(2017) 563–571. [27] R. He, D.F. Xu, B. Cheng, J.G. Yu, W. Ho, Review on nanoscale Bi-based photocatalysts, Nanoscale Horiz. 3(5) (2018) 464–504. [28] H. Fu, C. Pan, W. Yao, Y. Zhu, Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6, J. Phys. Chem. B 109(47) (2005) 22432–22439. [29] J.J. Wang, L. Tang, G.M. Zeng, Y.C. Deng, H.R. Dong, Y.N. Liu, L.L. Wang, B. Peng, C. Zhang, F. Chen, 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight, Appl. Catal. B: Environ. 222(2018) 115–123. [30] S.H. Gu, L.Z. Wang, J.L. Zhang, Enhanced visible light photocatalytic activity of flower-like Bi2WO6Loaded with MnOx, Chin. J. Chem. 35(2) (2017) 153–158. [31] J.X. Jiang, A. Trewin, F.B. Su, C.D. Wood, H.J. Niu, J.T.A. Jones, Y.Z. Khimyak, A.I. Cooper, Microporous Poly(tri(4-ethynylphenyl)amine) networks: synthesis, properties, and atomistic simulation, Macromolecules 42(7) (2009) 2658–2666. [32] J. Di, J.X. Xia, Y.P. Ge, H.P. Li, H.Y. Ji, H. Xu, Q. Zhang, H.M. Li, M.N. Li, Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight, Appl. Catal. B: Environ. 168–169(2015) 51–61. [33] F.T. Yu, Z.Q. Wang, S.C. Zhang, H.N. Ye, K.Y. Kong, X.Q. Gong, J.L. Hua, H. Tian, Molecular engineering of donor-acceptor conjugated polymer/g-C3N4 heterostructures for significantly enhanced hydrogen evolution under visible-light irradiation, Adv. Funct. Mater. 28(47) (2018) 1804512. [34] S.Q. Zhang, T. Lv, Y. Mu, J.Q. Zheng, C.G. Meng, High adsorption of Cd (II) by modification of synthetic zeolites Y, A and mordenite with thiourea, Chin. J. Chem. Eng. 28(12) (2020) 3117–3125. [35] D.B. Xu, L.L. Li, W.Q. Fan, F.G. Wang, H.Y. Bai, B.D. Mao, W.D. Shi, Preparation of WO3 thin films by dip film-drawing for photoelectrochemical performance, Chin. J. Chem. Eng. 27(5) (2019) 1207–1211. [36] Y.K. Huang, S.F. Kang, Y. Yang, H.F. Qin, Z.J. Ni, S.J. Yang, X. Li, Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light, Appl. Catal. B: Environ. 196(2016) 89–99. [37] L.W. Shan, J.B. Mi, L.M. Dong, Z.D. Han, B. Liu, Enhanced photocatalytic properties of silver oxide loaded bismuth vanadate, Chin. J. Chem. Eng. 22(8) (2014) 909–913. [38] Y.F. Liu, Y. Zou, H. Jiang, H.X. Gao, R.Z. Chen, Deactivation mechanism of betazeolite catalyst for synthesis of cumene by benzene alkylation with isopropanol, Chin. J. Chem. Eng. 25(9) (2017) 1195–1201. [39] C.M. Li, G. Chen, J.X. Sun, J.C. Rao, Z.H. Han, Y.D. Hu, W.N. Xing, C.M. Zhang, Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water, Appl. Catal. B: Environ. 188(2016) 39–47. [40] D.J. Wang, G.L. Xue, Y.Z. Zhen, F. Fu, D.S. Li, Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities, J. Mater. Chem. 22(11) (2012) 4751. [41] S.Y. Wang, X.L. Yang, H.J. Hou, X. Ding, S.H. Li, F. Deng, Y.G. Xiang, H. Chen, Highly efficient visible light induced photocatalytic activity of a novel in situ synthesized conjugated microporous poly(benzothiadiazole)–C3N4 composite, Catal. Sci. Technol. 7(2) (2017) 418–426. [42] Z.J. Zhang, W.Z. Wang, L. Wang, S.M. Sun, Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6, ACS Appl. Mater. Interfaces 4(2) (2012) 593–597. [43] R. Saffari, Z. Shariatinia, M. Jourshabani, Synthesis and photocatalytic degradation activities of phosphorus containing ZnO microparticles under visible light irradiation for water treatment applications, Environ. Pollut. 259(2020) 113902. [44] S. Horikoshi, F. Hojo, H. Hidaka, N. Serpone, Environmental remediation by an integrated microwave/UV illumination technique. 8. fate of carboxylic acids, aldehydes, alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2Particles under UV irradiation, Environ. Sci. Technol. 38(7) (2004) 2198–2208. [45] Z.Q. Ren, X.Y. Zhu, W. Liu, W. Sun, W.D. Zhang, J.T. Liu, Removal of aniline from wastewater using hollow fiber renewal liquid membrane, Chin. J. Chem. Eng. 22(11–12) (2014) 1187–1192. [46] Y.Y. Wang, W.J. Jiang, W.J. Luo, X.J. Chen, Y.F. Zhu, Ultrathin nanosheets gC3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity, Appl. Catal. B: Environ. 237(2018) 633–640. [47] J. Low, C.J. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J.G. Yu, A review of direct Z-scheme photocatalysts, Small Methods 1(5) (2017) 1700080. [48] D.L. Huang, J. Li, G.M. Zeng, W.J. Xue, S. Chen, Z.H. Li, R. Deng, Y. Yang, M. Cheng, Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism, Chem. Eng. J. 375(2019) 121991. |