Chinese Journal of Chemical Engineering ›› 2022, Vol. 41 ›› Issue (1): 488-496.DOI: 10.1016/j.cjche.2021.08.030
Previous Articles Next Articles
Fenghongkang Pan1, Yimeng Wang1,2, Kaiqing Zhao1, Jun Hu1, Honglai Liu1, Ying Hu1
Received:
2021-06-07
Revised:
2021-08-26
Online:
2022-02-25
Published:
2022-01-28
Contact:
Jun Hu,E-mail address:junhu@ecust.edu.cn
Supported by:
Fenghongkang Pan1, Yimeng Wang1,2, Kaiqing Zhao1, Jun Hu1, Honglai Liu1, Ying Hu1
通讯作者:
Jun Hu,E-mail address:junhu@ecust.edu.cn
基金资助:
Fenghongkang Pan, Yimeng Wang, Kaiqing Zhao, Jun Hu, Honglai Liu, Ying Hu. Photocatalytic degradation of tetracycline hydrochloride with visible light-responsive bismuth tungstate/conjugated microporous polymer[J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 488-496.
Fenghongkang Pan, Yimeng Wang, Kaiqing Zhao, Jun Hu, Honglai Liu, Ying Hu. Photocatalytic degradation of tetracycline hydrochloride with visible light-responsive bismuth tungstate/conjugated microporous polymer[J]. 中国化学工程学报, 2022, 41(1): 488-496.
[1] M. Qiao, G.G. Ying, A.C. Singer, Y.G. Zhu, Review of antibiotic resistance in China and its environment, Environ. Int. 110(2018) 160–172. [2] Q.Q. Zhang, G.G. Ying, C.G. Pan, Y.S. Liu, J.L. Zhao, Comprehensive evaluation of antibiotics emission and fate in the river basins of China: source analysis, multimedia modeling, and linkage to bacterial resistance, Environ. Sci. Technol. 49(11) (2015) 6772–6782. [3] X.D. Zhu, Y.J. Wang, R.J. Sun, D.M. Zhou, Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2, Chemosphere 92(8) (2013) 925–932. [4] Y.D. Liu, S.J. Zhou, F. Yang, H. Qin, Y. Kong, Degradation of phenol in industrial wastewater over the F-Fe/TiO2 photocatalysts under visible light illumination, Chin. J. Chem. Eng. 24(12) (2016) 1712–1718. [5] N. Daneshvar, D. Salari, A.R. Khataee, Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2, J. Photochem. Photobiol. A: Chem. 162(2–3) (2004) 317–322. [6] A. Kambur, G.S. Pozan, I. Boz, Preparation, characterization and photocatalytic activity of TiO2-ZrO2 binary oxide nanoparticles, Appl. Catal. B: Environ. 115–116(2012) 149–158. [7] G.C. Xi, B. Yue, J.Y. Cao, J.H. Ye, Fe3O4/WO3 hierarchical core-shell structure: high-performance and recyclable visible-light photocatalysis, Chemistry 17(18) (2011) 5145–5154. [8] M. Saeed, M. Muneer, N. Mumtaz, M. Siddique, N. Akram, M. Hamayun, AgCo3O4: Synthesis, characterization and evaluation of its photo-catalytic activity towards degradation of rhodamine B dye in aqueous medium, Chin. J. Chem. Eng. 26(6) (2018) 1264–1269. [9] W. Zhu, F.Q. Sun, R. Goei, Y. Zhou, Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole, Appl. Catal. B: Environ. 207(2017) 93–102. [10] M. Ahmadi, H. Ramezani Motlagh, N. Jaafarzadeh, A. Mostoufi, R. Saeedi, G. Barzegar, S. Jorfi, Enhanced photocatalytic degradation of tetracycline and real pharmaceutical wastewater using MWCNT/TiO2 nano-composite, J. Environ. Manag. 186(2017) 55–63. [11] J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, G-C3N4-based heterostructured photocatalysts, Adv. Energy Mater. 8(3) (2018) 1701503. [12] X.C. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater. 8(1) (2009) 76–80. [13] J.L. Zhang, Z. Ma, Porous g-C3N4 with enhanced adsorption and visible-light photocatalytic performance for removing aqueous dyes and tetracycline hydrochloride, Chin. J. Chem. Eng. 26(4) (2018) 753–760. [14] F.M. Zhang, J.L. Sheng, Z.D. Yang, X.J. Sun, H.L. Tang, M. Lu, H. Dong, F.C. Shen, J. Liu, Y.Q. Lan, Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors, Angew. Chem. Int. Ed. Engl. 57(37) (2018) 12106–12110. [15] F. Guo, S.Z. Yang, Y. Liu, P. Wang, J.E. Huang, W.Y. Sun, Size engineering of metal-organic framework MIL-101(Cr)-Ag hybrids for photocatalytic CO2 reduction, ACS Catal. 9(9) (2019) 8464–8470. [16] M. Wang, J.X. Liu, C.M. Guo, X.S. Gao, C.H. Gong, Y. Wang, B. Liu, X.X. Li, G.G. Gurzadyan, L.C. Sun, Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO2: the role of the morphology effect, J. Mater. Chem. A 6(11) (2018) 4768–4775. [17] B.C. Ma, S. Ghasimi, K. Landfester, F. Vilela, K.A.I. Zhang, Conjugated microporous polymer nanoparticles with enhanced dispersibility and water compatibility for photocatalytic applications, J. Mater. Chem. A 3(31) (2015) 16064–16071. [18] Z.J. Wang, S. Ghasimi, K. Landfester, K.A. Zhang, Molecular structural design of conjugated microporous poly(benzooxadiazole) networks for enhanced photocatalytic activity with visible light, Adv. Mater. 27(40) (2015) 6265–6270. [19] R.S. Sprick, J.-X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M.A. Zwijnenburg, D.J. Adams, A.I. Cooper, Tunable Organic Photocatalysts for Visible-Light-Driven Hydrogen Evolution, J. Am. Chem. Soc. 137(2015) 3265–3270. [20] C.H. Dai, B. Liu, Conjugated polymers for visible-light-driven photocatalysis, Energy Environ. Sci. 13(1) (2020) 24–52. [21] Y.L. Wong, J.M. Tobin, Z. Xu, F. Vilela, Conjugated porous polymers for photocatalytic applications, J. Mater. Chem. A 4(48) (2016) 18677–18686. [22] Z.A. Lan, G.G. Zhang, X. Chen, Y.F. Zhang, K.A. Zhang, X.C. Wang, Reducing the exciton binding energy of donor-acceptor-based conjugated polymers to promote charge-induced reactions, Angew. Chem. Int. Ed. Engl. 58(30) (2019) 10236–10240. [23] C. Yang, W. Huang, L.C. Da Silva, K.A.I. Zhang, X.C. Wang, Functional conjugated polymers for CO2 reduction using visible light, Chem. Eur. J. 24(66) (2018) 17454–17458. [24] K. Zhang, D. Kopetzki, P.H. Seeberger, M. Antonietti, F. Vilela, Surface area control and photocatalytic activity of conjugated microporous poly (benzothiadiazole) networks, Angew. Chem. Int. Ed. Engl. 52(5) (2013) 1432–1436. [25] J. Yu, X.Q. Sun, X.X. Xu, C. Zhang, X.M. He, Donor-acceptor type triazine-based conjugated porous polymer for visible-light-driven photocatalytic hydrogen evolution, Appl. Catal. B: Environ. 257(2019) 117935. [26] H.J. Hou, X.H. Zhang, D.K. Huang, X. Ding, S.Y. Wang, X.L. Yang, S.Q. Li, Y.G. Xiang, H. Chen, Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunction for visible-light-driven H2 production and pollutant removal, Appl. Catal. B: Environ. 203(2017) 563–571. [27] R. He, D.F. Xu, B. Cheng, J.G. Yu, W. Ho, Review on nanoscale Bi-based photocatalysts, Nanoscale Horiz. 3(5) (2018) 464–504. [28] H. Fu, C. Pan, W. Yao, Y. Zhu, Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6, J. Phys. Chem. B 109(47) (2005) 22432–22439. [29] J.J. Wang, L. Tang, G.M. Zeng, Y.C. Deng, H.R. Dong, Y.N. Liu, L.L. Wang, B. Peng, C. Zhang, F. Chen, 0D/2D interface engineering of carbon quantum dots modified Bi2WO6 ultrathin nanosheets with enhanced photoactivity for full spectrum light utilization and mechanism insight, Appl. Catal. B: Environ. 222(2018) 115–123. [30] S.H. Gu, L.Z. Wang, J.L. Zhang, Enhanced visible light photocatalytic activity of flower-like Bi2WO6Loaded with MnOx, Chin. J. Chem. 35(2) (2017) 153–158. [31] J.X. Jiang, A. Trewin, F.B. Su, C.D. Wood, H.J. Niu, J.T.A. Jones, Y.Z. Khimyak, A.I. Cooper, Microporous Poly(tri(4-ethynylphenyl)amine) networks: synthesis, properties, and atomistic simulation, Macromolecules 42(7) (2009) 2658–2666. [32] J. Di, J.X. Xia, Y.P. Ge, H.P. Li, H.Y. Ji, H. Xu, Q. Zhang, H.M. Li, M.N. Li, Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight, Appl. Catal. B: Environ. 168–169(2015) 51–61. [33] F.T. Yu, Z.Q. Wang, S.C. Zhang, H.N. Ye, K.Y. Kong, X.Q. Gong, J.L. Hua, H. Tian, Molecular engineering of donor-acceptor conjugated polymer/g-C3N4 heterostructures for significantly enhanced hydrogen evolution under visible-light irradiation, Adv. Funct. Mater. 28(47) (2018) 1804512. [34] S.Q. Zhang, T. Lv, Y. Mu, J.Q. Zheng, C.G. Meng, High adsorption of Cd (II) by modification of synthetic zeolites Y, A and mordenite with thiourea, Chin. J. Chem. Eng. 28(12) (2020) 3117–3125. [35] D.B. Xu, L.L. Li, W.Q. Fan, F.G. Wang, H.Y. Bai, B.D. Mao, W.D. Shi, Preparation of WO3 thin films by dip film-drawing for photoelectrochemical performance, Chin. J. Chem. Eng. 27(5) (2019) 1207–1211. [36] Y.K. Huang, S.F. Kang, Y. Yang, H.F. Qin, Z.J. Ni, S.J. Yang, X. Li, Facile synthesis of Bi/Bi2WO6 nanocomposite with enhanced photocatalytic activity under visible light, Appl. Catal. B: Environ. 196(2016) 89–99. [37] L.W. Shan, J.B. Mi, L.M. Dong, Z.D. Han, B. Liu, Enhanced photocatalytic properties of silver oxide loaded bismuth vanadate, Chin. J. Chem. Eng. 22(8) (2014) 909–913. [38] Y.F. Liu, Y. Zou, H. Jiang, H.X. Gao, R.Z. Chen, Deactivation mechanism of betazeolite catalyst for synthesis of cumene by benzene alkylation with isopropanol, Chin. J. Chem. Eng. 25(9) (2017) 1195–1201. [39] C.M. Li, G. Chen, J.X. Sun, J.C. Rao, Z.H. Han, Y.D. Hu, W.N. Xing, C.M. Zhang, Doping effect of phosphate in Bi2WO6 and universal improved photocatalytic activity for removing various pollutants in water, Appl. Catal. B: Environ. 188(2016) 39–47. [40] D.J. Wang, G.L. Xue, Y.Z. Zhen, F. Fu, D.S. Li, Monodispersed Ag nanoparticles loaded on the surface of spherical Bi2WO6 nanoarchitectures with enhanced photocatalytic activities, J. Mater. Chem. 22(11) (2012) 4751. [41] S.Y. Wang, X.L. Yang, H.J. Hou, X. Ding, S.H. Li, F. Deng, Y.G. Xiang, H. Chen, Highly efficient visible light induced photocatalytic activity of a novel in situ synthesized conjugated microporous poly(benzothiadiazole)–C3N4 composite, Catal. Sci. Technol. 7(2) (2017) 418–426. [42] Z.J. Zhang, W.Z. Wang, L. Wang, S.M. Sun, Enhancement of visible-light photocatalysis by coupling with narrow-band-gap semiconductor: a case study on Bi2S3/Bi2WO6, ACS Appl. Mater. Interfaces 4(2) (2012) 593–597. [43] R. Saffari, Z. Shariatinia, M. Jourshabani, Synthesis and photocatalytic degradation activities of phosphorus containing ZnO microparticles under visible light irradiation for water treatment applications, Environ. Pollut. 259(2020) 113902. [44] S. Horikoshi, F. Hojo, H. Hidaka, N. Serpone, Environmental remediation by an integrated microwave/UV illumination technique. 8. fate of carboxylic acids, aldehydes, alkoxycarbonyl and phenolic substrates in a microwave radiation field in the presence of TiO2Particles under UV irradiation, Environ. Sci. Technol. 38(7) (2004) 2198–2208. [45] Z.Q. Ren, X.Y. Zhu, W. Liu, W. Sun, W.D. Zhang, J.T. Liu, Removal of aniline from wastewater using hollow fiber renewal liquid membrane, Chin. J. Chem. Eng. 22(11–12) (2014) 1187–1192. [46] Y.Y. Wang, W.J. Jiang, W.J. Luo, X.J. Chen, Y.F. Zhu, Ultrathin nanosheets gC3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity, Appl. Catal. B: Environ. 237(2018) 633–640. [47] J. Low, C.J. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi, J.G. Yu, A review of direct Z-scheme photocatalysts, Small Methods 1(5) (2017) 1700080. [48] D.L. Huang, J. Li, G.M. Zeng, W.J. Xue, S. Chen, Z.H. Li, R. Deng, Y. Yang, M. Cheng, Facile construction of hierarchical flower-like Z-scheme AgBr/Bi2WO6 photocatalysts for effective removal of tetracycline: Degradation pathways and mechanism, Chem. Eng. J. 375(2019) 121991. |
[1] | Xia Miao, Xiaofan Pang, Shiyu Li, Haoguang Wei, Jianhao Yin, Xiangming Kong. Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 118-130. |
[2] | Xiaolin Pan, Mengyuan Gao, Yun Wang, Yanping He, Tian Si, Yanlin Sun. Poly(lactic acid)-aspirin microspheres prepared via the traditional and improved solvent evaporation methods and its application performances [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 194-204. |
[3] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 200-209. |
[4] | Masoumeh Sheikh Hosseini Lori, Mohammad Delnavaz, Hoda Khoshvaght. Synthesizing and characterizing the magnetic EDTA/chitosan/CeZnO nanocomposite for simultaneous treating of chromium and phenol in an aqueous solution [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 76-88. |
[5] | Hu Chen, Ying Wang, Puyu Wang, Yongkang Lv. Assessing quinoline removal performances of an aerobic continuous moving bed biofilm reactor (MBBR) bioaugmented with Pseudomonas citronellolis LV1 [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 132-140. |
[6] | Yaqiao Liu, Shuozhen Hu, Xinsheng Zhang, Shigang Sun. Investigation of photoelectrocatalytic degradation mechanism of methylene blue by α-Fe2O3 nanorods array [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 162-172. |
[7] | Jiajun Wang, Wenbin Yang, Jiangtao Geng, Zhigang Shao, Wei Song. Experimental investigation on degradation mechanism of membrane electrode assembly at different humidity under automotive protocol [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 70-79. |
[8] | Iltaf Khan, Chunjuan Wang, Shoaib Khan, Jinyin Chen, Aftab Khan, Sayyar Ali Shah, Aihua Yuan, Sohail Khan, Mehwish K. Butt, Humaira Asghar. Bio-capped and green synthesis of ZnO/g-C3N4 nanocomposites and its improved antibiotic and photocatalytic activities: An exceptional approach towards environmental remediation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 215-224. |
[9] | Abid Ali, Bilal Ul Amin, Wenwu Yu, Taijiang Gui, Weiwei Cong, Kai Zhang, Zheming Tong, Jiankun Hu, Xiaoli Zhan, Qinghua Zhang. Eco-friendly biodegradable polyurethane based coating for antibacterial and antifouling performance [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 80-88. |
[10] | Jingjing Pan, Haoran Sun, Keyi Chen, Yuhao Zhang, Pengnian Shan, Weilong Shi, Feng Guo. Nanodiamonds decorated yolk-shell ZnFe2O4 sphere as magnetically separable and recyclable composite for boosting antibiotic degradation performance [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 162-172. |
[11] | Chao Zhang, Youzhi Liu, Weizhou Jiao, Hongyan Shen, Xigang Yuan, Shengkun Jia. An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 83-88. |
[12] | Hongwei Guo, Linyuan Chen, Xueying Zhang, Huanhao Chen, Yan Shao. Silicalite-1 zeolite encapsulated Fe nanocatalyst for Fenton-like degradation of methylene blue [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 251-259. |
[13] | Feng Guo, Chunli Shi, Wei Sun, Yanan Liu, Xue Lin, Weilong Shi. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 1-11. |
[14] | Min Lu, Mengxuan Liu, Chunli Xu, Yu Yin, Lei Shi, Hong Wu, Aihua Yuan, Xiao-Ming Ren, Shaobin Wang, Hongqi Sun. Location and size regulation of manganese oxides within mesoporous silica for enhanced antibiotic degradation [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 36-43. |
[15] | Hao Zhou, Qi Yin. Hydrothermal preparation of Nb-doped NaTaO3 with enhanced photocatalytic activity for removal of organic dye [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 142-149. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 33
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||