Chinese Journal of Chemical Engineering ›› 2022, Vol. 48 ›› Issue (8): 1-11.DOI: 10.1016/j.cjche.2021.06.027
Feng Guo1,2, Chunli Shi1, Wei Sun1, Yanan Liu1, Xue Lin1, Weilong Shi3,4
Received:
2021-03-09
Revised:
2021-06-21
Online:
2022-09-30
Published:
2022-08-28
Contact:
Xue Lin,E-mail:jlsdlinxue@126.com;Weilong Shi,E-mail:shiwl@just.edu.cn
Supported by:
Feng Guo1,2, Chunli Shi1, Wei Sun1, Yanan Liu1, Xue Lin1, Weilong Shi3,4
通讯作者:
Xue Lin,E-mail:jlsdlinxue@126.com;Weilong Shi,E-mail:shiwl@just.edu.cn
基金资助:
Feng Guo, Chunli Shi, Wei Sun, Yanan Liu, Xue Lin, Weilong Shi. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline[J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 1-11.
Feng Guo, Chunli Shi, Wei Sun, Yanan Liu, Xue Lin, Weilong Shi. Pomelo biochar as an electron acceptor to modify graphitic carbon nitride for boosting visible-light-driven photocatalytic degradation of tetracycline[J]. 中国化学工程学报, 2022, 48(8): 1-11.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.06.027
[1] J.L. Liu, B.Q. Zhou, H. Zhang, J. Ma, B. Mu, W.B. Zhang, A novel Biochar modified by Chitosan-Fe/S for tetracycline adsorption and studies on site energy distribution, Bioresour Technol 294 (2019) 122152.https://www.ncbi.nlm.nih.gov/pubmed/31557651/ [2] F. Guo, W.L. Shi, M.Y. Li, Y. Shi, H.B. Wen, 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline, Sep. Purif. Technol. 210 (2019) 608–615.http://dx.doi.org/10.1016/j.seppur.2018.08.055 [3] S.Q. Wu, H.Y. Hu, Y. Lin, J.L. Zhang, Y.H. Hu, Visible light photocatalytic degradation of tetracycline over TiO2, Chem. Eng. J. 382 (2020) 122842.http://dx.doi.org/10.1016/j.cej.2019.122842 [4] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, W.X. Hou, C. Wang, W.L. Shi, C.Y. Lu, Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation, Appl. Surf. Sci. 491 (2019) 88–94 [5] Y.X. Wang, L. Rao, P.F. Wang, Z.Y. Shi, L.X. Zhang, Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment, Appl. Catal. B: Environ. 262 (2020) 118308.http://dx.doi.org/10.1016/j.apcatb.2019.118308 [6] F. Guo, M.Y. Li, H.J. Ren, X.L. Huang, K.K. Shu, W.L. Shi, C.Y. Lu, Facile bottom-up preparation of Cl-doped porous g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline under visible light, Sep. Purif. Technol. 228 (2019) 115770.http://dx.doi.org/10.1016/j.seppur.2019.115770 [7] W.L. Shi, H.J. Ren, M.Y. Li, K.K. Shu, Y.S. Xu, C. Yan, Y.B. Tang, Tetracycline removal from aqueous solution by visible-light-driven photocatalytic degradation with low cost red mud wastes, Chem. Eng. J. 382 (2020) 122876.http://dx.doi.org/10.1016/j.cej.2019.122876 [8] H.B. Yu, D.Y. Wang, B. Zhao, Y. Lu, X.H. Wang, S.Y. Zhu, W.C. Qin, M.X. Huo, Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction, Sep. Purif. Technol. 237 (2020) 116365.http://dx.doi.org/10.1016/j.seppur.2019.116365 [9] Q. Zhu, Y.K. Sun, F.S. Na, J. Wei, S. Xu, Y.L. Li, F. Guo, Fabrication of CdS/titanium-oxo-cluster nanocomposites based on a Ti32 framework with enhanced photocatalytic activity for tetracycline hydrochloride degradation under visible light, Appl. Catal. B: Environ. 254 (2019) 541–550.http://dx.doi.org/10.1016/j.apcatb.2019.05.006 [10] R. Zhao, T.T. Ma, S. Zhao, H.Z. Rong, Y.Y. Tian, G.S. Zhu, Uniform and stable immobilization of metal-organic frameworks into chitosan matrix for enhanced tetracycline removal from water, Chem. Eng. J. 382 (2020) 122893.http://dx.doi.org/10.1016/j.cej.2019.122893 [11] F. Guo, W.L. Shi, H.B. Wang, H. Huang, Y. Liu, Z.H. Kang, Fabrication of a CuBi2O4/g-C3N4 p–n heterojunction with enhanced visible light photocatalytic efficiency toward tetracycline degradation, Inorg. Chem. Front. 4 (10) (2017) 1714–1720.https://doi.org/10.1039/c7qi00402h [12] C.Y. Lu, F. Guo, Q.Z. Yan, Z.J. Zhang, D. Li, L.P. Wang, Y.H. Zhou, Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light, J. Alloy. Compd. 811 (2019) 151976.http://dx.doi.org/10.1016/j.jallcom.2019.151976 [13] M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review, Carbohydr Polym 113 (2014) 115–130.https://www.ncbi.nlm.nih.gov/pubmed/25256466/ [14] M.B. Ahmed, J.L. Zhou, H.H. Ngo, W.S. Guo, N.S. Thomaidis, J. Xu, Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater: a critical review, J Hazard Mater 323 (Pt A) (2017) 274–298.https://www.ncbi.nlm.nih.gov/pubmed/27143286/ [15] Y.W. Sun, X. Qi, R.Q. Li, Y.T. Xie, Q. Tang, B.X. Ren, Hydrothermal synthesis of 2D/2D BiOCl/g-C3N4 Z-scheme: For TC degradation and antimicrobial activity evaluation, Opt. Mater. 108 (2020) 110170.http://dx.doi.org/10.1016/j.optmat.2020.110170 [16] A. Gómez-Avilés, M. Pe?as-Garzón, J. Bedia, J.J. Rodriguez, C. Belver, C-modified TiO2 using lignin as carbon precursor for the solar photocatalytic degradation of acetaminophen, Chem. Eng. J. 358 (2019) 1574–1582.http://dx.doi.org/10.1016/j.cej.2018.10.154 [17] F. Liu, T.P. Nguyen, Q. Wang, F. Massuyeau, Y. Dan, L. Jiang, Construction of Z-scheme g-C3N4/Ag/P3HT heterojunction for enhanced visible-light photocatalytic degradation of tetracycline (TC) and methyl orange (MO), Appl. Surf. Sci. 496 (2019) 143653.http://dx.doi.org/10.1016/j.apsusc.2019.143653 [18] C. Gao, J. Wang, H.X. Xu, Y.J. Xiong, Coordination chemistry in the design of heterogeneous photocatalysts, Chem Soc Rev 46 (10) (2017) 2799–2823.https://www.ncbi.nlm.nih.gov/pubmed/28368055/ [19] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes: Mechanism and degradation pathway, Sep. Purif. Technol. 253 (2020) 117518.http://dx.doi.org/10.1016/j.seppur.2020.117518 [20] A. Dhakshinamoorthy, S. Navalon, A. Corma, H. Garcia, Photocatalytic CO2 reduction by TiO2 and related titanium containing solids, Energy Environ. Sci. 5 (11) (2012) 9217.https://doi.org/10.1039/c2ee21948d [21] W.L. Shi, M.Y. Li, H.J. Ren, F. Guo, X.L. Huang, Y. Shi, Y.B. Tang, Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity, Beilstein J Nanotechnol 10 (2019) 1360–1367.https://www.ncbi.nlm.nih.gov/pubmed/31355104/ [22] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, F. Guo, C. Yan, Three-dimensional Z-Scheme Ag3PO4/Co3(PO4)2@Ag heterojunction for improved visible-light photocatalytic degradation activity of tetracycline, J. Alloy. Compd. 818 (2020) 152883.http://dx.doi.org/10.1016/j.jallcom.2019.152883 [23] C.R. Chen, H.Y. Zeng, M.Y. Yi, G.F. Xiao, S. Xu, S.G. Shen, B. Feng, In-situ growth of Ag3PO4 on calcined Zn-Al layered double hydroxides for enhanced photocatalytic degradation of tetracycline under simulated solar light irradiation and toxicity assessment, Appl. Catal. B: Environ. 252 (2019) 47–54.http://dx.doi.org/10.1016/j.apcatb.2019.03.083 [24] H.G. Yu, L.L. Xu, P. Wang, X.F. Wang, J.G. Yu, Enhanced photoinduced stability and photocatalytic activity of AgBr photocatalyst by surface modification of Fe(III) cocatalyst, Appl. Catal. B: Environ. 144 (2014) 75–82.http://dx.doi.org/10.1016/j.apcatb.2013.06.023 [25] N. Belhouchet, B. Hamdi, H. Chenchouni, Y. Bessekhouad, Photocatalytic degradation of tetracycline antibiotic using new calcite/titania nanocomposites, J. Photochem. Photobiol. A: Chem. 372 (2019) 196–205.http://dx.doi.org/10.1016/j.jphotochem.2018.12.016 [26] S. Ghayempour, M. Montazer, M. Mahmoudi Rad, Tragacanth gum biopolymer as reducing and stabilizing agent in biosonosynthesis of urchin-like ZnO nanorod arrays: a low cytotoxic photocatalyst with antibacterial and antifungal properties, Carbohydr Polym 136 (2016) 232–241.https://www.ncbi.nlm.nih.gov/pubmed/26572351/ [27] X.F. Lei, T.H. Xu, W.F. Yao, Q. Wu, R.J. Zou, Hollow hydroxyapatite microspheres modified by CdS nanoparticles for efficiently photocatalytic degradation of tetracycline, J. Taiwan Inst. Chem. Eng. 106 (2020) 148–158.http://dx.doi.org/10.1016/j.jtice.2019.10.023 [28] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, Y.B. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Sep. Purif. Technol. 212 (2019) 142–149.http://dx.doi.org/10.1016/j.seppur.2018.11.028 [29] J.M. Wang, J. Luo, D. Liu, S.T. Chen, T.Y. Peng, One-pot solvothermal synthesis of MoS2-modified Mn0.2Cd0.8S/MnS heterojunction photocatalysts for highly efficient visible-light-driven H2 production, Appl. Catal. B: Environ. 241 (2019) 130–140.http://dx.doi.org/10.1016/j.apcatb.2018.09.033 [30] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, M.J. Shi, C. Yan, Constructing 3D sub-micrometer CoO octahedrons packed with layered MoS2 shell for boosting photocatalytic overall water splitting activity, Appl. Surf. Sci. 473 (2019) 928–933.http://dx.doi.org/10.1016/j.apsusc.2018.12.247 [31] X.L. Miao, X.P. Shen, J.J. Wu, Z.Y. Ji, J.H. Wang, L.R. Kong, M.M. Liu, C.S. Song, Fabrication of an all solid Z-scheme photocatalyst g-C3N4/GO/AgBr with enhanced visible light photocatalytic activity, Appl. Catal. A: Gen. 539 (2017) 104–113.http://dx.doi.org/10.1016/j.apcata.2017.04.009 [32] P. Suyana, P. Ganguly, B.N. Nair, A.P. Mohamed, K.G.K. Warrier, U.S. Hareesh, Co3O4–C3N4 p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation, Environ. Sci.: Nano 4 (1) (2017) 212–221.https://doi.org/10.1039/c6en00410e [33] X.P. Song, D. Tang, Y.F. Chen, M.Y. Yin, Q. Yang, Z.Q. Chen, L.M. Zhou, A facile and green combined strategy for improving photocatalytic activity of carbon nitride, ACS Omega 4 (4) (2019) 6114–6125.https://www.ncbi.nlm.nih.gov/pubmed/31459757/ [34] S. Thaweesak, M.Q. Lyu, P. Peerakiatkhajohn, T. Butburee, B. Luo, H.J. Chen, L.Z. Wang, Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution, Appl. Catal. B: Environ. 202 (2017) 184–190.http://dx.doi.org/10.1016/j.apcatb.2016.09.022 [35] W.L. Shi, M.Y. Li, X.L. Huang, H.J. Ren, C. Yan, F. Guo, Facile synthesis of 2D/2D Co3(PO4)2/g-C3N4 heterojunction for highly photocatalytic overall water splitting under visible light, Chem. Eng. J. 382 (2020) 122960.http://dx.doi.org/10.1016/j.cej.2019.122960 [36] W.L. Shi, C. Liu, M.Y. Li, X. Lin, F. Guo, J.Y. Shi, Fabrication of ternary Ag3PO4/Co3(PO4)2/g-C3N4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity, J Hazard Mater 389 (2020) 121907.https://www.ncbi.nlm.nih.gov/pubmed/31879109/ [37] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, High-efficiency photocatalytic water splitting by a N-doped porous g-C3N4 nanosheet polymer photocatalyst derived from urea and N, N-dimethylformamide, Inorg. Chem. Front. 7 (8) (2020) 1770–1779.https://doi.org/10.1039/d0qi00117a [38] Z.Q. Liang, X.F. Meng, Y.J. Xue, X.Y. Chen, Y.L. Zhou, X.L. Zhang, H.Z. Cui, J. Tian, Facile preparation of metallic 1T phase molybdenum selenide as cocatalyst coupled with graphitic carbon nitride for enhanced photocatalytic H2 production, J Colloid Interface Sci 598 (2021) 172–180.https://www.ncbi.nlm.nih.gov/pubmed/33901844/ [39] X. Li, X.R. Qian, X.H. An, J.W. Huang, Preparation of a novel composite comprising biochar skeleton and “chrysanthemum” g-C3N4 for enhanced visible light photocatalytic degradation of formaldehyde, Appl. Surf. Sci. 487 (2019) 1262–1270.http://dx.doi.org/10.1016/j.apsusc.2019.05.195 [40] A. Kumar, A. Kumar, G. Sharma, M. Naushad, F.J. Stadler, A.A. Ghfar, P. Dhiman, R.V. Saini, Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants- Synergism of adsorption, photocatalysis & photo-ozonation, J. Clean. Prod. 165 (2017) 431–451.http://dx.doi.org/10.1016/j.jclepro.2017.07.117 [41] F. Guo, L.J. Wang, H.R. Sun, M.Y. Li, W.L. Shi, X. Lin, A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen, Int. J. Hydrog. Energy 45 (55) (2020) 30521–30532.http://dx.doi.org/10.1016/j.ijhydene.2020.08.080 [42] H.R. Sun, F. Guo, J.J. Pan, W. Huang, K. Wang, W.L. Shi, One-pot thermal polymerization route to prepare N-deficient modified g-C3N4 for the degradation of tetracycline by the synergistic effect of photocatalysis and persulfate-based advanced oxidation process, Chem. Eng. J. 406 (2021) 126844.http://dx.doi.org/10.1016/j.cej.2020.126844 [43] Z.Q. Liang, S.R. Yang, X.Y. Wang, H.Z. Cui, X.Z. Wang, J. Tian, The metallic 1T-phase WS2 nanosheets as cocatalysts for enhancing the photocatalytic hydrogen evolution of g-C3N4 nanotubes, Appl. Catal. B: Environ. 274 (2020) 119114.http://dx.doi.org/10.1016/j.apcatb.2020.119114 [44] Z.Q. Liang, Y.J. Xue, X.Y. Wang, Y.L. Zhou, X.L. Zhang, H.Z. Cui, G.Q. Cheng, J. Tian, Co doped MoS2 as cocatalyst considerably improved photocatalytic hydrogen evolution of g-C3N4 in an alkalescent environment, Chem. Eng. J. 421 (2021) 130016.http://dx.doi.org/10.1016/j.cej.2021.130016 [45] G.M. Li, B. Wang, J. Zhang, R. Wang, H.L. Liu, Rational construction of a direct Z-scheme g-C3N4/CdS photocatalyst with enhanced visible light photocatalytic activity and degradation of erythromycin and tetracycline, Appl. Surf. Sci. 478 (2019) 1056–1064.http://dx.doi.org/10.1016/j.apsusc.2019.02.035 [46] F. Guo, X.L. Huang, Z.H. Chen, L.W. Cao, X.F. Cheng, L.Z. Chen, W.L. Shi, Construction of Cu3P-ZnSnO3-g-C3N4 p-n-n heterojunction with multiple built-in electric fields for effectively boosting visible-light photocatalytic degradation of broad-spectrum antibiotics, Sep. Purif. Technol. 265 (2021) 118477.http://dx.doi.org/10.1016/j.seppur.2021.118477 [47] W.Q. Zhang, W.L. Shi, H.R. Sun, Y.X. Shi, H. Luo, S.R. Jing, Y.Q. Fan, F. Guo, C.Y. Lu, Fabrication of ternary CoO/g-C 3 N4/Co 3 O4 nanocomposite with p-n-p type heterojunction for boosted visible-light photocatalytic performance, J. Chem. Technol. Biotechnol. 96 (7) (2021) 1854–1863.https://doi.org/10.1002/jctb.6703 [48] Y.B. Li, H.M. Zhang, P.R. Liu, D. Wang, Y. Li, H.J. Zhao, Cross-linked g-C3 N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity, Small 9 (19) (2013) 3336–3344.https://www.ncbi.nlm.nih.gov/pubmed/23630157/ [49] X.G. Ma, Y. Wei, Z. Wei, H. He, C.Y. Huang, Y.F. Zhu, Probing π-π stacking modulation of g-C3N4/graphene heterojunctions and corresponding role of graphene on photocatalytic activity, J. Colloid Interface Sci. 508 (2017) 274–281.http://dx.doi.org/10.1016/j.jcis.2017.08.037 [50] S. Yang, C. Liu, J.B. Wang, X. Lin, Y.Z. Hong, F. Guo, J.Y. Shi, Enhanced photocatalytic activity of g-C3N4 quantum dots/Bi3.64Mo0.36O6.55 nanospheres composites, J. Solid State Chem. 287 (2020) 121347.http://dx.doi.org/10.1016/j.jssc.2020.121347 [51] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56 (3) (2021) 2226–2240.http://dx.doi.org/10.1007/s10853-020-05436-2 [52] L. Pi, R. Jiang, W.C. Zhou, H. Zhu, W. Xiao, D.H. Wang, X.H. Mao, G-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants, Appl. Surf. Sci. 358 (2015) 231–239.http://dx.doi.org/10.1016/j.apsusc.2015.08.176 [53] D.L. Huang, H. Luo, C. Zhang, G.M. Zeng, C. Lai, M. Cheng, R.Z. Wang, R. Deng, W.J. Xue, X.M. Gong, X.Y. Guo, T. Li, Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: Insight into the influences on Fenton-like process, Chem. Eng. J. 361 (2019) 353–363.http://dx.doi.org/10.1016/j.cej.2018.12.098 [54] P.P. Wang, F.Q. Dong, M.X. Liu, H.C. He, T.T. Huo, L. Zhou, W. Zhang, Improving photoelectrochemical reduction of Cr(VI) ions by building α-Fe2O3/TiO2 electrode, Environ Sci Pollut Res Int 25 (23) (2018) 22455–22463.https://www.ncbi.nlm.nih.gov/pubmed/29460249/ [55] P.P. Zuo, J.Q. Duan, H.L. Fan, S.J. Qu, W.Z. Shen, Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation, Appl. Surf. Sci. 435 (2018) 1020–1028.http://dx.doi.org/10.1016/j.apsusc.2017.11.179 [56] H. Zheng, Q.Y. Sun, Y.H. Li, Q.J. Du, Biosorbents prepared from pomelo peel by hydrothermal technique and its adsorption properties for Congo red, Mater. Res. Express 7 (4) (2020) 045505.https://doi.org/10.1088/2053-1591/ab8a83 [57] H. Zhang, F.Q. Yu, W.P. Kang, Q. Shen, Encapsulating selenium into macro-/micro-porous biochar-based framework for high-performance lithium-selenium batteries, Carbon 95 (2015) 354–363.http://dx.doi.org/10.1016/j.carbon.2015.08.050 [58] W.C. Wang, L.H. Zhang, Z. Li, S.H. Zhang, C. Wang, Z. Wang, A nanoporous carbon material derived from pomelo peels as a fiber coating for solid-phase microextraction, RSC Adv. 6 (115) (2016) 113951–113958.https://doi.org/10.1039/c6ra24225a [59] W. Wang, P. Xu, M. Chen, G. Zeng, C. Zhang, C. Zhou, Y. Yang, D. Huang, C. Lai, M. Cheng, L. Hu, W. Xiong, H. Guo, M. Zhou, Alkali Metal-Assisted Synthesis of Graphite Carbon Nitride with Tunable Band-Gap for Enhanced Visible-Light-Driven Photocatalytic Performance, ACS Sustain Chem Eng, 6 (2018) 15503-15516 [60] X.X. Zhao, Z.Y. Lu, R. Ji, M.H. Zhang, C.W. Yi, Y.S. Yan, Biomass carbon modified Z-scheme g-C3N4/Co3O4 heterojunction with enhanced visible-light photocatalytic activity, Catal. Commun. 112 (2018) 49–52.http://dx.doi.org/10.1016/j.catcom.2018.04.003 [61] H.N. Che, G.B. Che, P.J. Zhou, C.B. Liu, H.J. Dong, Yeast-derived carbon sphere as a bridge of charge carriers towards to enhanced photocatalytic activity of 2D/2D Cu2WS4/g-C3N4 heterojunction, J Colloid Interface Sci 546 (2019) 262–275.https://www.ncbi.nlm.nih.gov/pubmed/30927592/ [62] X.F. Zhu, F. Guo, J.J. Pan, H.R. Sun, L.L. Gao, J.X. Deng, X.Y. Zhu, W.L. Shi, Fabrication of visible-light-response face-contact ZnSnO3@g-C3N4 core-shell heterojunction for highly efficient photocatalytic degradation of tetracycline contaminant and mechanism insight, J. Mater. Sci. 56 (6) (2021) 4366–4379.http://dx.doi.org/10.1007/s10853-020-05542-1 [63] W.L. Shi, K.K. Shu, X.L. Huang, H.J. Ren, M.Y. Li, F.Y. Chen, F. Guo, Enhancement of visible-light photocatalytic degradation performance over nitrogen-deficient g-C 3 N4/KNbO 3 heterojunction photocatalyst, J. Chem. Technol. Biotechnol. 95 (5) (2020) 1476–1486.https://doi.org/10.1002/jctb.6338 [64] S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir 25 (17) (2009) 10397–10401.https://www.ncbi.nlm.nih.gov/pubmed/19705905/ [65] Y.Z. Hong, L.Y. Wang, E.L. Liu, J.H. Chen, Z.G. Wang, S.Q. Zhang, X. Lin, X.X. Duan, J.Y. Shi, A curly architectured graphitic carbon nitride (g-C3N4) towards efficient visible-light photocatalytic H2 evolution, Inorg. Chem. Front. 7 (2) (2020) 347–355.https://doi.org/10.1039/c9qi01128e [66] A. Kumar, G. Sharma, M. Naushad, A.H. Al-Muhtaseb, A. Kumar, I. Hira, T. Ahamad, A.A. Ghfar, F.J. Stadler, Visible photodegradation of ibuprofen and 2, 4-D in simulated waste water using sustainable metal free-hybrids based on carbon nitride and biochar, J Environ Manage 231 (2019) 1164–1175.https://www.ncbi.nlm.nih.gov/pubmed/30602241/ [67] L.Y. Wang, Y.Z. Hong, E.L. Liu, X.X. Duan, X. Lin, J.Y. Shi, A bottom-up acidification strategy engineered ultrathin g-C3N4 nanosheets towards boosting photocatalytic hydrogen evolution, Carbon 163 (2020) 234–243.http://dx.doi.org/10.1016/j.carbon.2020.03.031 [68] G.H. Liu, M.L. Liao, Z.H. Zhang, H.Y. Wang, D.H. Chen, Y.J. Feng, Enhanced photodegradation performance of Rhodamine B with g-C3N4 modified by carbon nanotubes, Sep. Purif. Technol. 244 (2020) 116618.http://dx.doi.org/10.1016/j.seppur.2020.116618 [69] L. Sun, S.G. Wan, W.S. Luo, Biochars prepared from anaerobic digestion residue, palm bark, and eucalyptus for adsorption of cationic methylene blue dye: characterization, equilibrium, and kinetic studies, Bioresour Technol 140 (2013) 406–413.https://www.ncbi.nlm.nih.gov/pubmed/23714096/ [70] L.L. Hu, Y.H. Liao, D.H. Xia, F. Peng, L. Tan, S.Y. Hu, C.S. Zheng, X.L. Lu, C. He, D. Shu, Engineered photocatalytic fuel cell with oxygen vacancies-rich rGO/BiO1?xI as photoanode and biomass-derived N-doped carbon as cathode: Promotion of reactive oxygen species production via Fe2+/Fe3+ redox, Chem. Eng. J. 385 (2020) 123824.http://dx.doi.org/10.1016/j.cej.2019.123824 [71] S.J. Ye, M. Yan, X.F. Tan, J. Liang, G.M. Zeng, H.P. Wu, B. Song, C.Y. Zhou, Y. Yang, H. Wang, Facile assembled biochar-based nanocomposite with improved graphitization for efficient photocatalytic activity driven by visible light, Appl. Catal. B: Environ. 250 (2019) 78–88.http://dx.doi.org/10.1016/j.apcatb.2019.03.004 [72] S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, L.L. Ma, Z.Y. Fang, R. Vajtai, X.C. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv Mater 25 (17) (2013) 2452–2456.https://www.ncbi.nlm.nih.gov/pubmed/23450777/ [73] J.W. Fu, B.C. Zhu, C.J. Jiang, B. Cheng, W. You, J.G. Yu, Hierarchical porous O-doped g-C3 N4 with enhanced photocatalytic CO2 reduction activity, Small 13 (15) (2017). DOI:10.1002/smll.201603938.https://www.ncbi.nlm.nih.gov/pubmed/28160415/ [74] B. He, M. Feng, X.Y. Chen, D.W. Zhao, J. Sun, One-pot construction of chitin-derived carbon/g-C3N4 heterojunction for the improvement of visible-light photocatalysis, Appl. Surf. Sci. 527 (2020) 146737.http://dx.doi.org/10.1016/j.apsusc.2020.146737 [75] W. Ho, Z.Z. Zhang, W. Lin, S.P. Huang, X.W. Zhang, X.X. Wang, Y. Huang, Copolymerization with 2, 4, 6-triaminopyrimidine for the rolling-up the layer structure, tunable electronic properties, and photocatalysis of g-C3N4, ACS Appl Mater Interfaces 7 (9) (2015) 5497–5505.https://www.ncbi.nlm.nih.gov/pubmed/25706325/ [76] W.K. Wang, H.M. Zhang, S.B. Zhang, Y.Y. Liu, G.Z. Wang, C.H. Sun, H.J. Zhao, Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction, Angew Chem Int Ed Engl 58 (46) (2019) 16644–16650.https://www.ncbi.nlm.nih.gov/pubmed/31497911/ [77] R.F. Nie, M. Miao, W.C. Du, J.J. Shi, Y.C. Liu, Z.Y. Hou, Selective hydrogenation of CC bond over N-doped reduced graphene oxides supported Pd catalyst, Appl. Catal. B: Environ. 180 (2016) 607–613.http://dx.doi.org/10.1016/j.apcatb.2015.07.015 [78] X.M. Li, X. Sun, L. Zhang, S.M. Sun, W.Z. Wang, Efficient photocatalytic fixation of N2by KOH-treated g-C3N4, J. Mater. Chem. A 6 (7) (2018) 3005–3011.https://doi.org/10.1039/c7ta09762j [79] L.H. Zhang, Z.Y. Jin, S.L. Huang, X.Y. Huang, B.H. Xu, L. Hu, H.Z. Cui, S.C. Ruan, Y.J. Zeng, Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution, Appl. Catal. B: Environ. 246 (2019) 61–71.http://dx.doi.org/10.1016/j.apcatb.2019.01.040 [80] Y.L. Zheng, Y.C. Yang, Y. Zhang, W.X. Zou, Y.D. Luo, L. Dong, B. Gao, Facile one-step synthesis of graphitic carbon nitride-modified biochar for the removal of reactive red 120 through adsorption and photocatalytic degradation, Biochar 1 (1) (2019) 89–96.http://dx.doi.org/10.1007/s42773-019-00007-4 [81] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Müller, R. Schl?gl, J.M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem. 18 (41) (2008) 4893.https://doi.org/10.1039/b800274f [82] C. Chang, Y. Fu, M. Hu, C.Y. Wang, G.Q. Shan, L.Y. Zhu, Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation, Appl. Catal. B: Environ. 142-143 (2013) 553–560.http://dx.doi.org/10.1016/j.apcatb.2013.05.044 [83] Z. Zhu, C.C. Ma, K.S. Yu, Z.Y. Lu, Z. Liu, P.W. Huo, X. Tang, Y.S. Yan, Synthesis Ce-doped biomass carbon-based g-C3N4 via plant growing guide and temperature-programmed technique for degrading 2-Mercaptobenzothiazole, Appl. Catal. B: Environ. 268 (2020) 118432.http://dx.doi.org/10.1016/j.apcatb.2019.118432 [84] F. Guo, H.R. Sun, L. Cheng, W.L. Shi, Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight, New J. Chem. 44 (26) (2020) 11215–11223.https://doi.org/10.1039/d0nj02268c [85] Y.N. Liu, C. Liu, C.L. Shi, W. Sun, X. Lin, W.L. Shi, Y.Z. Hong, Carbon-based quantum dots (QDs) modified ms/tz-BiVO4 heterojunction with enhanced photocatalytic performance for water purification, J. Alloy. Compd. 881 (2021) 160437.http://dx.doi.org/10.1016/j.jallcom.2021.160437 [86] C.Y. Zhou, D.L. Huang, P. Xu, G.M. Zeng, J.H. Huang, T.Z. Shi, C. Lai, C. Zhang, M. Cheng, Y. Lu, A. Duan, W.P. Xiong, M. Zhou, Efficient visible light driven degradation of sulfamethazine and tetracycline by salicylic acid modified polymeric carbon nitride via charge transfer, Chem. Eng. J. 370 (2019) 1077–1086.http://dx.doi.org/10.1016/j.cej.2019.03.279 [87] C. Zhao, Z.Z. Liao, W. Liu, F.Y. Liu, J.Y. Ye, J.L. Liang, Y.Y. Li, Carbon quantum dots modified tubular g-C3N4 with enhanced photocatalytic activity for carbamazepine elimination: Mechanisms, degradation pathway and DFT calculation, J Hazard Mater 381 (2020) 120957.https://www.ncbi.nlm.nih.gov/pubmed/31421549/ [88] M. Shen, L.X. Zhang, M. Wang, J.J. Tian, X.X. Jin, L.M. Guo, L.Z. Wang, J.L. Shi, Carbon-vacancy modified graphitic carbon nitride: enhanced CO2 photocatalytic reduction performance and mechanism probing, J. Mater. Chem. A 7 (4) (2019) 1556–1563.https://doi.org/10.1039/c8ta09302d [89] L.J. Wang, R.Q. Guan, Y.F. Qi, F.L. Zhang, P. Li, J.M. Wang, P. Qu, G. Zhou, W.L. Shi, Constructing Zn-P charge transfer bridge over ZnFe2O4-black phosphorus 3D microcavity structure: Efficient photocatalyst design in visible-near-infrared region, J Colloid Interface Sci 600 (2021) 463–472.https://www.ncbi.nlm.nih.gov/pubmed/34030006/ [90] S.H. Wang, L. Zhao, W. Huang, H. Zhao, J.Y. Chen, Q. Cai, X. Jiang, C.Y. Lu, W.L. Shi, Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline, Mater. Res. Bull. 135 (2021) 111161.http://dx.doi.org/10.1016/j.materresbull.2020.111161 [91] W.L. Shi, J.B. Wang, S. Yang, X. Lin, F. Guo, J.Y. Shi, Fabrication of a ternary carbon dots/CoO/g-C 3 N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production, J. Chem. Technol. Biotechnol. 95 (8) (2020) 2129–2138.https://doi.org/10.1002/jctb.6398 [92] O. Norouzi, A. Kheradmand, Y.J. Jiang, F. Di Maria, O. Masek, Superior activity of metal oxide biochar composite in hydrogen evolution under artificial solar irradiation: a promising alternative to conventional metal-based photocatalysts, Int. J. Hydrog. Energy 44 (54) (2019) 28698–28708.http://dx.doi.org/10.1016/j.ijhydene.2019.09.119 [93] J. Yang, Y.J. Liang, K. Li, G. Yang, S. Yin, One-step low-temperature synthesis of 0D CeO2 quantum dots/2D BiOX (X = Cl, Br) nanoplates heterojunctions for highly boosting photo-oxidation and reduction ability, Appl. Catal. B: Environ. 250 (2019) 17–30.http://dx.doi.org/10.1016/j.apcatb.2019.03.017 [94] F. Deng, L.N. Zhao, X.B. Luo, S.L. Luo, D.D. Dionysiou, Highly efficient visible-light photocatalytic performance of Ag/AgIn5S8 for degradation of tetracycline hydrochloride and treatment of real pharmaceutical industry wastewater, Chem. Eng. J. 333 (2018) 423–433.http://dx.doi.org/10.1016/j.cej.2017.09.022 [95] S.D. Zhao, J.R. Chen, Y.F. Liu, Y. Jiang, C.G. Jiang, Z.L. Yin, Y.G. Xiao, S.S. Cao, Silver nanoparticles confined in shell-in-shell hollow TiO2 manifesting efficiently photocatalytic activity and stability, Chem. Eng. J. 367 (2019) 249–259.http://dx.doi.org/10.1016/j.cej.2019.02.123 [96] Y. Hu, K. Chen, Y.L. Li, J.Y. He, K.S. Zhang, T. Liu, W. Xu, X.J. Huang, L.T. Kong, J.H. Liu, Morphology-tunable WMoO nanowire catalysts for the extremely efficient elimination of tetracycline: kinetics, mechanisms and intermediates, Nanoscale 11 (3) (2019) 1047–1057.https://www.ncbi.nlm.nih.gov/pubmed/30569932/ [97] Z.J. Xie, Y.P. Feng, F.L. Wang, D.N. Chen, Q.X. Zhang, Y.Q. Zeng, W. Lv, G.G. Liu, Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline, Appl. Catal. B: Environ. 229 (2018) 96–104.http://dx.doi.org/10.1016/j.apcatb.2018.02.011 [98] Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, In-situ synthesis of direct solid-state Z-scheme V2O5/g-C3N4 heterojunctions with enhanced visible light efficiency in photocatalytic degradation of pollutants, Appl. Catal. B: Environ. 180 (2016) 663–673.http://dx.doi.org/10.1016/j.apcatb.2015.06.057 [99] F. Guo, H. Sun, X. Huang, W. Shi, C. Yan, Fabrication of TiO2/high-crystalline g-C3N4 composite with enhanced visible-light photocatalytic performance for tetracycline degradation, J Chem Technol Biotechnol, (2020) 2684-2693 [100] X.Y. Wang, M.Y. Lu, J. Ma, P. Ning, L. Che, Synthesis of K-doped g-C3N4/carbon microsphere@graphene composite with high surface area for enhanced adsorption and visible photocatalytic degradation of tetracycline, J. Taiwan Inst. Chem. Eng. 91 (2018) 609–622.http://dx.doi.org/10.1016/j.jtice.2018.06.019 |
[1] | Yuhan Zhu, Jia Wei, Jun Li. Decontamination of Cr(VI) from water using sewage sludge-derived biochar: Role of environmentally persistent free radicals [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 97-103. |
[2] | Miaomiao Zhao, Degang Ma, Yu Ye. Adsorption, separation and recovery properties of blocky zeolite-biochar composites for remediation of cadmium contaminated soil [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 272-279. |
[3] | Qingyue Han, Suqing Wang, Wenhan Kong, Bing Ji, Haihui Wang. Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 257-263. |
[4] | Hao Zhou, Qi Yin. Hydrothermal preparation of Nb-doped NaTaO3 with enhanced photocatalytic activity for removal of organic dye [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 142-149. |
[5] | Mohamed A. El-Nemr, Ibrahim M. A. Ismail, Nabil M. Abdelmonem, Ahmed El Nemr, Safaa Ragab. Amination of biochar surface from watermelon peel for toxic chromium removal enhancement [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 199-222. |
[6] | Chen Xu, Zhenyi Du, Shiqi Yang, Hongda Ma, Jie Feng. Effects of inherent potassium on the catalytic performance of Ni/biochar for steam reforming of toluene as a tar model compound [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 189-195. |
[7] | Qinggele Borjihan, Quanfu Yao, Huihui Qu, Haixia Wu, Ying Liu, Alideertu Dong. Glycopolymer N-halamine-modified biochars with high specificity for Escherichia coli eradication [J]. Chinese Journal of Chemical Engineering, 2021, 38(10): 229-236. |
[8] | Rui Shan, Yueyue Shi, Jing Gu, Yazhuo Wang, Haoran Yuan. Single and competitive adsorption affinity of heavy metals toward peanut shell-derived biochar and its mechanisms in aqueous systems [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1375-1383. |
[9] | Zhenhao Li, Bo Xing, Yan Ding, Yunchao Li, Shurong Wang. A high-performance biochar produced from bamboo pyrolysis with in-situ nitrogen doping and activation for adsorption of phenol and methylene blue [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2872-2880. |
[10] | Qiachun Lin, Zesheng Li, Tingjian Lin, Bolin Li, Xichun Liao, Huiqing Yu, Changlin Yu. Controlled preparation of P-doped g-C3N4 nanosheets for efficient photocatalytic hydrogen production [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2677-2688. |
[11] | Suchith Chellappan, Vaishakh Nair, Sajith V., Aparna K. . Synthesis, optimization and characterization of biochar based catalyst from sawdust for simultaneous esterification and transesterification [J]. Chin.J.Chem.Eng., 2018, 26(12): 2654-2663. |
[12] | Meinan Zhen, Benru Song, Xiaomei Liu, Radhika Chandankere, Jingchun Tang. Biochar-mediated regulation of greenhouse gas emission and toxicity reduction in bioremediation of organophosphorus pesticide-contaminated soils [J]. Chin.J.Chem.Eng., 2018, 26(12): 2592-2600. |
[13] | Shuangshuang Tian, Zhongxin Tan, Alfreda Kasiuliene., Ping Ai. Transformation mechanism of nutrient elements in the process of biochar preparation for returning biochar to soil [J]. , 2017, 25(4): 477-486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||