[1] M.K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature 486(7401) (2012) 43–51. [2] L. Chong, J. Wen, J. Kubal, F.G. Sen, J. Zou, J. Greeley, M. Chan, H. Barkholtz, W. Ding, D.J. Liu, Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks, Science 362(6420) (2018) 1276–1281. [3] X. Tian, X. Zhao, Y.Q. Su, L. Wang, H. Wang, D. Dang, B. Chi, H. Liu, E.J.M. Hensen, X.W.D. Lou, B.Y. Xia, Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells, Science 366(6467) (2019) 850–856. [4] A. Kongkanand, N.P. Subramanian, Y.C. Yu, Z.Y. Liu, H. Igarashi, D.A. Muller, Achieving high-power PEM fuel cell performance with an ultralow-Pt-content core-shell catalyst, ACS Catal. 6(3) (2016) 1578–1583. [5] J. Choi, J.H. Jang, C.W. Roh, S. Yang, J. Kim, J. Lim, S.J. Yoo, H. Lee, Gram-scale synthesis of highly active and durable octahedral PtNi nanoparticle catalysts for proton exchange membrane fuel cell, Appl. Catal. B: Environ. 225(2018) 530–537. [6] B.Y. Xia, W.T. Ng, H.B. Wu, X. Wang, X.W. Lou, Self-supported interconnected Pt nanoassemblies as highly stable electrocatalysts for low-temperature fuel cells, Angew. Chem. Int. Ed. Engl. 51(29) (2012) 7213–7216. [7] M.H. Shao, A. Peles, K. Shoemaker, Electrocatalysis on platinum nanoparticles: Particle size effect on oxygen reduction reaction activity, Nano Lett. 11(9) (2011) 3714–3719. [8] B.Y. Xia, H.B. Wu, X. Wang, X.W. Lou, Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties, Angew. Chem. Int. Ed. Engl. 52(47) (2013) 12337–12340. [9] L. Ma, C.M. Wang, B.Y. Xia, K.K. Mao, J.W. He, X.J. Wu, Y.J. Xiong, X.W. Lou, Platinum multicubes prepared by Ni(2+)-mediated shape evolution exhibit high electrocatalytic activity for oxygen reduction, Angew. Chem. Int. Ed. Engl. 54(19) (2015) 5666–5671. [10] Q.Y. Jia, W.T. Liang, M.K. Bates, P. Mani, W. Lee, S. Mukerjee, Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: In situ observation of the linear composition-strain-activity relationship, ACS Nano 9(1) (2015) 387–400. [11] I.E.L. Stephens, A.S. Bondarenko, U. Grønbjerg, J. Rossmeisl, I. Chorkendorff, Understanding the electrocatalysis of oxygen reduction on platinum and its alloys, Energy Environ. Sci. 5(5) (2012) 6744. [12] E.B. Tetteh, H.Y. Lee, C.H. Shin, S.H. Kim, H.C. Ham, T.N. Tran, J.H. Jang, S.J. Yoo, J.S. Yu, New PtMg alloy with durable electrocatalytic performance for oxygen reduction reaction in proton exchange membrane fuel cell, ACS Energy Lett. 5(5) (2020) 1601–1609. [13] X.Q. Huang, Z.P. Zhao, L. Cao, Y. Chen, E.B. Zhu, Z.Y. Lin, M.F. Li, A.M. Yan, A. Zettl, Y.M. Wang, X.F. Duan, T. Mueller, Y. Huang, Electrochemistry. Highperformance transition metal-doped Pt3Ni octahedra for oxygen reduction reaction, Science 348(6240) (2015) 1230–1234. [14] H.T. Wang, S.C. Xu, C. Tsai, Y.Z. Li, C. Liu, J. Zhao, Y.Y. Liu, H.Y. Yuan, F. AbildPedersen, F.B. Prinz, J.K. Nørskov, Y. Cui, Direct and continuous strain control of catalysts with tunable battery electrode materials, Science 354(6315) (2016) 1031–1036. [15] Q.M. Wang, S.G. Chen, F. Shi, K. Chen, Y. Nie, Y. Wang, R. Wu, J. Li, Y. Zhang, W. Ding, Y. Li, L. Li, Z.D. Wei, Structural evolution of solid Pt nanoparticles to a hollow PtFe alloy with a Pt-skin surface via space-confined pyrolysis and the nanoscale kirkendall effect, Adv. Mater. 28(48) (2016) 10673–10678. [16] X.X. Wang, S. Hwang, Y.T. Pan, K.T. Chen, Y.H. He, S. Karakalos, H.G. Zhang, J.S. Spendelow, D. Su, G. Wu, Ordered Pt3Co intermetallic nanoparticles derived from metal-organic frameworks for oxygen reduction, Nano Lett. 18(7) (2018) 4163–4171. [17] Y.G. Feng, B.L. Huang, C.Y. Yang, Q. Shao, X.Q. Huang, Platinum porous nanosheets with high surface distortion and Pt utilization for enhanced oxygen reduction catalysis, Adv. Funct. Mater. 29(45) (2019) 1904429. [18] C.Z. Wan, X.F. Duan, Y. Huang, Molecular design of single-atom catalysts for oxygen reduction reaction, Adv. Energy Mater. 10(14) (2020) 1903815. [19] R. Lang, X.R. Du, Y.K. Huang, X.Z. Jiang, Q. Zhang, Y.L. Guo, K.P. Liu, B.T. Qiao, A. Q. Wang, T. Zhang, Single-atom catalysts based on the metal-oxide interaction, Chem. Rev. 120(21) (2020) 11986–12043. [20] J.X. Jiang, W. Ding, W. Li, Z.D. Wei, Freestanding single-atom-layer Pd-based catalysts: Oriented splitting of energy bands for unique stability and activity, Chem 6(2) (2020) 431–447. [21] S.G. Chen, Z.D. Wei, H. Li, L. Li, High Pt utilization PEMFC electrode obtained by alternative ion-exchange/electrodeposition, Chem. Commun. (Camb.) 46(46) (2010) 8782–8784. [22] E. Middelman, Improved PEM fuel cell electrodes by controlled self-assembly, Fuel Cells Bull. 2002(11) (2002) 9–12. [23] Z.Q. Tian, S.H. Lim, C.K. Poh, Z. Tang, Z.T. Xia, Z.Q. Luo, P.K. Shen, D. Chua, Y.P. Feng, Z.X. Shen, J.Y. Lin, A highly order-structured membrane electrode assembly with vertically aligned carbon nanotubes for ultra-low Pt loading PEM fuel cells, Adv. Energy Mater. 1(6) (2011) 1205–1214. [24] S. Murata, M. Imanishi, S. Hasegawa, R. Namba, Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells, J. Power Sources 253(2014) 104–113. [25] Y.C. Zeng, Z.G. Shao, H.J. Zhang, Z.Q. Wang, S.J. Hong, H.M. Yu, B.L. Yi, Nanostructured ultrathin catalyst layer based on open-walled PtCo bimetallic nanotube arrays for proton exchange membrane fuel cells, Nano Energy 34(2017) 344–355. [26] M.B. Ji, Z.D. Wei, S.G. Chen, L. Li, A novel antiflooding electrode for proton exchange membrane fuel cells, J. Phys. Chem. C 113(2) (2009) 765–771. [27] S.M. Andersen, M. Borghei, P. Lund, Y.R. Elina, A. Pasanen, E. Kauppinen, V. Ruiz, P. Kauranen, E.M. Skou, Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells, Solid State Ionics 231(2013) 94–101. [28] Y.M. Liang, H.M. Zhang, B.L. Yi, Z.H. Zhang, Z.C. Tan, Preparation and characterization of multi-walled carbon nanotubes supported PtRu catalysts for proton exchange membrane fuel cells, Carbon 43(15) (2005) 3144–3152. [29] C. Gupta, P.H. Maheshwari, S. Sasikala, R.B. Mathur, Processing of pristine carbon nanotube supported platinum as catalyst for PEM fuel cell, Mater. Renew. Sustain. Energy 3(4) (2014) 36. [30] F. Hasché, M. Oezaslan, P. Strasser, Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts, Phys. Chem. Chem. Phys. 12(46) (2010) 15251–15258. [31] W.M. Zhang, P. Sherrell, A.I. Minett, J.M. Razal, J. Chen, Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells, Energy Environ. Sci. 3(9) (2010) 1286. [32] J. Kim, H. Kim, H. Song, D. Kim, G.H. Kim, D. Im, Y. Jeong, T. Park, Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells, Energy 227(2021) 120459. [33] J. Wei, F.D. Ning, C. Bai, T. Zhang, G.B. Lu, H.H. Wang, Y.L. Li, Y.B. Shen, X.W. Fu, Q.W. Li, H.H. Jin, X.C. Zhou, An ultra-thin, flexible, low-cost and scalable gas diffusion layer composed of carbon nanotubes for high-performance fuel cells, J. Mater. Chem. A 8(12) (2020) 5986–5994. [34] S.Y. Hou, B. Chi, G.Z. Liu, J.W. Ren, H.Y. Song, S.J. Liao, Enhanced performance of proton exchange membrane fuel cell by introducing nitrogen-doped CNTs in both catalyst layer and gas diffusion layer, Electrochim. Acta 253(2017) 142–150. [35] B. Chi, Y.K. Ye, X.Y. Lu, S.J. Jiang, L. Du, J.H. Zeng, J.W. Ren, S.J. Liao, Enhancing membrane electrode assembly performance by improving the porous structure and hydrophobicity of the cathode catalyst layer, J. Power Sources 443(2019) 227284. |