Chinese Journal of Chemical Engineering ›› 2022, Vol. 42 ›› Issue (2): 1-9.DOI: 10.1016/j.cjche.2021.08.013
Tongan Yan1, Minman Tong2, Qingyuan Yang1, Dahuan Liu1, Yandong Guo3, Chongli Zhong4
Received:
2021-05-29
Revised:
2021-08-14
Online:
2022-03-30
Published:
2022-02-28
Contact:
Yandong Guo,E-mail:guoyandong@qymail.bhu.edu.cn;Chongli Zhong,E-mail:zhongchongli@tiangong.edu.cn
Supported by:
Tongan Yan1, Minman Tong2, Qingyuan Yang1, Dahuan Liu1, Yandong Guo3, Chongli Zhong4
通讯作者:
Yandong Guo,E-mail:guoyandong@qymail.bhu.edu.cn;Chongli Zhong,E-mail:zhongchongli@tiangong.edu.cn
基金资助:
Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites[J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 1-9.
Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites[J]. 中国化学工程学报, 2022, 42(2): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.08.013
[1] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon:From CO2 to chemicals, materials, and fuels. Technological use of CO2, Chem. Rev. 114 (3) (2014) 1709-1742 [2] W.R. Lee, S.Y. Hwang, D.W. Ryu, K.S. Lim, S.S. Han, D. Moon, J. Choi, C.S. Hong, Diamine-functionalized metal-organic framework:Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism, Energy Environ. Sci. 7 (2) (2014) 744-751 [3] Y.J. Zhao, L.L. Zheng, D. Jiang, W. Xia, X.T. Xu, Y. Yamauchi, J.P. Ge, J. Tang, Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions, Small 17 (16) (2021) 2006590 [4] Y.S. Bae, R.Q. Snurr, Development and evaluation of porous materials for carbon dioxide separation and capture, Angew. Chem. Int. Ed. 50 (49) (2011) 11586-11596 [5] J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown, J. Liu, Progress in adsorption-based CO2 capture by metal-organic frameworks, Chem. Soc. Rev. 41 (6) (2012) 2308-2322 [6] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112 (2) (2012) 724-781 [7] M.M.F. Hasan, E.L. First, F. Boukouvala, C.A. Floudas, A multi-scale framework for CO2 capture, utilization, and sequestration:CCUS and CCU, Comput. Chem. Eng. 81 (2015) 2-21 [8] Z.B. Bao, G.G. Chang, H.B. Xing, R. Krishna, Q.L. Ren, B.L. Chen, Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures, Energy Environ. Sci. 9 (12) (2016) 3612-3641 [9] V. Benoit, R.S. Pillai, A. Orsi, P. Normand, H. Jobic, F. Nouar, P. Billemont, E. Bloch, S. Bourrelly, T. Devic, P.A. Wright, G. de Weireld, C. Serre, G. Maurin, P.L. Llewellyn, MIL-91(Ti), a small pore metal-organic framework which fulfils several criteria:An upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport, J. Mater. Chem. A 4 (4) (2016) 1383-1389 [10] Q.G. Zhai, X.H. Bu, X. Zhao, D.S. Li, P.Y. Feng, Pore space partition in metal-organic frameworks, Accounts Chem. Res. 50 (2) (2017) 407-417 [11] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341 (6149) (2013) 1230444 [12] G. Maurin, C. Serre, A. Cooper, G. Férey, The new age of MOFs and of their porous-related solids, Chem. Soc. Rev. 46 (11) (2017) 3104-3107 [13] S.T. Meek, J.A. Greathouse, M.D. Allendorf, Metal-organic frameworks:A rapidly growing class of versatile nanoporous materials, Adv. Mater. 23 (2) (2011) 249-267 [14] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O'Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science 329 (5990) (2010) 424-428 [15] O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities, Nat. Chem. 2 (11) (2010) 944-948 [16] O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal-organic framework materials with ultrahigh surface areas:is the sky the limit?J. Am. Chem. Soc. 134 (36) (2012) 15016-15021 [17] R. Grünker, V. Bon, P. Müller, U. Stoeck, S. Krause, U. Mueller, I. Senkovska, S. Kaskel, A new metal-organic framework with ultra-high surface area, Chem. Commun. 50 (26) (2014) 3450 [18] T.C. Wang, W. Bury, D.A. Gómez-Gualdrón, N.A. Vermeulen, J.E. Mondloch, P. Deria, K.N. Zhang, P.Z. Moghadam, A.A. Sarjeant, R.Q. Snurr, J.F. Stoddart, J.T. Hupp, O.K. Farha, Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory, J. Am. Chem. Soc. 137 (10) (2015) 3585-3591 [19] H.K. Knuutila, R. Rennemo, A.F. Ciftja, New solvent blends for post-combustion CO2 capture, Green Energy Environ. 4 (4) (2019), 439-452 [20] B. Szczęśniak, J. Choma, Graphene-containing microporous composites for selective CO2 adsorption, Microporous Mesoporous Mater. 292 (2020) 109761 [21] M. Asgari, A. Streb, M. van der Spek, W. Queen, M. Mazzotti, Synergistic material and process development:Application of a metal-organic framework, Cu-TDPAT, in single-cycle hydrogen purification and CO2 capture from synthesis gas, Chem. Eng. J. 414 (2021) 128778 [22] Z. Niu, X. Cui, T. Pham, G. Verma, P.C. Lan, C. Shan, H. Xing, K.A. Forrest, S. Suepaul, B. Space, A. Nafady, A.M. Al-Enizi, S. Ma, A MOF-based ultra-strong acetylene nano-trap for highly efficient C2H2/CO2 separation, Angew. Chem. Int. Ed. 60 (10) (2021) 5283-5288 [23] R.M.L. Helberg, Z. Dai, L. Ansaloni, L. Deng, PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes:Synergistic enhancement of CO2 separation performance, Green Energy Environ. 5 (1) (2020) 59-68 [24] S. Chen, N. Behera, C. Yang, Q.B. Dong, B.S. Zheng, Y.Y. Li, Q. Tang, Z.X. Wang, Y.Q. Wang, J.G. Duan, A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation, Nano Res. 14 (2) (2021) 546-553 [25] K.L. Yao, Y.J. Xia, J. Li, N. Wang, J.R. Han, C.C. Gao, M. Han, G.Q. Shen, Y.C. Liu, A. Seifitokaldani, X.H. Sun, H.Y. Liang, Metal-organic framework derived copper catalysts for CO2 to ethylene conversion, J. Mater. Chem. A 8 (22) (2020) 11117-11123 [26] L. Majidi, A. Ahmadiparidari, N.N. Shan, S.N. Misal, K. Kumar, Z.H. Huang, S. Rastegar, Z. Hemmat, X.D. Zou, P. Zapol, J. Cabana, L.A. Curtiss, A. Salehi-Khojin, 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials, Adv. Mater. 33 (10) (2021) 2004393 [27] D. Chen, L. Xu, H. Liu, J. Yang, Rough-surfaced bimetallic copper-palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction, Green Energy Environ. 4 (3) (2019) 254-263 [28] T.M. Tovar, J.J. Zhao, W.T. Nunn, H.F. Barton, G.W. Peterson, G.N. Parsons, M.D. LeVan, Diffusion of CO2 in large crystals of Cu-BTC MOF, J. Am. Chem. Soc. 138 (36) (2016) 11449-11452 [29] F. Salles, H. Jobic, A. Ghoufi, P. Llewellyn, C. Serre, S. Bourrelly, G. Férey, G. Maurin, Transport diffusivity of CO2 in the highly flexible metal-organic framework MIL-53(Cr), Angew. Chem. Int. Ed. 48 (44) (2009) 8335-8339 [30] Z.B. Bao, S. Alnemrat, L. Yu, I. Vasiliev, Q.L. Ren, X.Y. Lu, S.G. Deng, Kinetic separation of carbon dioxide and methane on a copper metal-organic framework, J. Colloid Interface Sci. 357 (2) (2011) 504-509 [31] Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu, B. Han, Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction, Angew. Chem. Int. Ed. 59 (23) (2020) 8896-8901 [32] J.Y. Liu, L.W. Peng, Y. Zhou, L. Lv, J. Fu, J. Lin, D. Guay, J.L. Qiao, Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction, ACS Sustainable Chem. Eng. 7 (18) (2019) 15739-15746 [33] A.L. Dzubak, L.C. Lin, J. Kim, J.A. Swisher, R. Poloni, S.N. Maximoff, B. Smit, L. Gagliardi, Ab initio carbon capture in open-site metal-organic frameworks, Nat. Chem. 4 (10) (2012) 810-816 [34] L. Liu, L. Wang, D.H. Liu, Q.Y. Yang, C.L. Zhong, High-throughput computational screening of Cu-MOFs with open metal sites for efficient C2H2/C2H4 separation, Green Energy Environ. 5 (3) (2020) 333-340 [35] Y.G. Chung, J. Camp, M. Haranczyk, B.J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O.K. Farha, D.S. Sholl, R.Q. Snurr, Computation-ready, experimental metal-organic frameworks:A tool to enable high-throughput screening of nanoporous crystals, Chem. Mater. 26 (21) (2014) 6185-6192 [36] H. Daglar, S. Keskin, Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations, Coord. Chem. Rev. 422 (2020) 213470 [37] T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater. 149 (1) (2012) 134-141 [38] J.G. Harris, K.H. Yung, Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model, J. Phys. Chem. 99 (31) (1995) 12021-12024 [39] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (4A) (1965) A1133 [40] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (15) (2006) 1787-1799 [41] C. Zhang, L. Wang, G. Maurin, Q.Y. Yang, In silico screening of MOFs with open copper sites for C2H2/CO2 separation, AIChE J. 64 (11) (2018) 4089-4096 [42] D. Frenkel, B. Smit, Understanding Molecular Simulation:From Algorithms to Applications, Elsevier, Amsterdam, 2001 [43] C.E. Wilmer, K.C. Kim, R.Q. Snurr, An extended charge equilibration method, J. Phys. Chem. Lett. 3 (17) (2012) 2506-2511 [44] G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Explicit reversible integrators for extended systems dynamics, Mol. Phys. 87 (5) (1996) 1117-1157 [45] F.J. Keil, R. Krishna, M.O. Coppens, Modeling of diffusion in zeolites, Rev. Chem. Eng. 16 (2) (2000) 71-197 [46] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98 (45) (1994) 11623-11627 [47] A.D. McLean, G.S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18, J. Chem. Phys. 72 (10) (1980) 5639-5648 [48] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1) (1980) 650-654 [49] C.K. Kim, J. Won, H.S. Kim, Y.S. Kang, H.G. Li, C.K. Kim, Density functional theory studies on the dissociation energies of metallic salts:Relationship between lattice and dissociation energies, J. Comput. Chem. 22 (8) (2001) 827-834 [50] Y. Yang, S.L. Shi, D.W. Niu, P. Liu, S.L. Buchwald, Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines, Science 349 (6243) (2015) 62-66 [51] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CT, USA, 2010. [52] R. Dennington, T.A. Keith, J.M. Millam, GaussView, Version 5.0.8, Semichem Inc., Shawnee Mission, USA, 2008. [53] M. Fischer, F. Hoffmann, M. Fröba, New microporous materials for acetylene storage and C2H2/CO2 separation:Insights from molecular simulations, ChemPhysChem 11 (10) (2010) 2220-2229 [54] T. Watanabe, S. Keskin, S. Nair, D.S. Sholl, Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations:Cu(hfipbb)(H2hfipbb)0.5, Phys. Chem. Chem. Phys. 11 (48) (2009) 11389 [55] S. Nandi, R. Maity, D. Chakraborty, H. Ballav, R. Vaidhyanathan, Preferential adsorption of CO2 in an ultramicroporous MOF with cavities lined by basic groups and open-metal sites, Inorg. Chem. 57 (9) (2018) 5267-5272 [56] Z. Deng, T. Wan, D. Chen, W. Ying, Y.J. Zeng, Y. Yan, X. Peng, Photothermal-responsive microporous nanosheets confined ionic liquid for efficient CO2 separation, Small 16 (34) (2020) 2002699 [57] E.L. First, C.A. Floudas, MOFomics:Computational pore characterization of metal-organic frameworks, Microporous Mesoporous Mater. 165 (2013) 32-39 [58] H. Furukawa, Y.B. Go, N. Ko, Y.K. Park, F.J. Uribe-Romo, J. Kim, M. O'Keeffe, O.M. Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals, Inorg. Chem. 50 (18) (2011) 9147-9152 [59] R. Poloni, K. Lee, R.F. Berger, B. Smit, J.B. Neaton, Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites, J. Phys. Chem. Lett. 5 (5) (2014) 861-865 |
[1] | Vladimir S. Derevschikov, Janna V. Veselovskaya, Anton S. Shalygin, Dmitry A. Yatsenko, Andrey Z. Sheshkovas, Oleg N. Martyanov. Operating limits and features of direct air capture on K2CO3/ZrO2 composite sorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 11-20. |
[2] | Jipeng Dong, Fei Wang, Guanghui Chen, Shougui Wang, Cailin Ji, Fei Gao. Fabrication of nickel oxide functionalized zeolite USY composite as a promising adsorbent for CO2 capture [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 207-213. |
[3] | Youwei Yang, Jingyu Zhang, Yueqi Gao, Busha Assaba Fayisa, Antai Li, Shouying Huang, Jing Lv, Yue Wang, Xinbin Ma. Highly dispersed nickel boosts catalysis by Cu/SiO2 in the hydrogenation of CO2-derived ethylene carbonate to methanol and ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 77-85. |
[4] | Zhen Lu, Jie He, Bogeng Guo, Yulai Zhao, Jingyu Cai, Longqiang Xiao, Linxi Hou. Efficient homogenous catalysis of CO2 to generate cyclic carbonates by heterogenous and recyclable polypyrazoles [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 110-115. |
[5] | Xin Li, Song Hong, Leiduan Hao, Zhenyu Sun. Cadmium-based metal-organic frameworks for high-performance electrochemical CO2 reduction to CO over wide potential range [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 143-151. |
[6] | Yichao Wu, Zhiwei Xie, Xiaofeng Gao, Xian Zhou, Yangzhi Xu, Shurui Fan, Siyu Yao, Xiaonian Li, Lili Lin. The highly selective catalytic hydrogenation of CO2 to CO over transition metal nitrides [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 248-254. |
[7] | Xiangyu Dou, Haoyang Huang, Yongsheng Han. The role of diffusion in the nucleation of calcium carbonate [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 275-281. |
[8] | Zheyu Liu, Jian Zhang, Xianjie Li, Chunming Xu, Xin Chen, Bo Zhang, Guang Zhao, Han Zhang, Yiqiang Li. Conformance control by a microgel in a multi-layered heterogeneous reservoir during CO2 enhanced oil recovery process [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 324-334. |
[9] | Tongan Yan, Dahuan Liu, Qingyuan Yang, Chongli Zhong. Screening and design of COF-based mixed-matrix membrane for CH4/N2 separation [J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 170-177. |
[10] | Tao Zhao, Dazhong Zhong, Genyan Hao, Guang Liu, Jinping Li, Qiang Zhao. Ag nanoparticles anchored on MIL-100/nickel foam nanosheets as an electrocatalyst for efficient oxygen evolution reaction performance [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 480-487. |
[11] | Yonghou Xiao, Shuang Qiu, Qidong Zhao, Yuhao Zhu, Chirag B. Godiya, Gaohong He. Numerical simulation of low-concentration CO2 adsorption on fixed bed using finite element analysis [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 47-56. |
[12] | Xia Chen, Yan Wang, Lianying Wu, Weitao Zhang, Yangdong Hu. Testing and validation of a self-diffusion coefficient model based on molecular dynamics simulations [J]. Chinese Journal of Chemical Engineering, 2021, 36(8): 138-145. |
[13] | Zichao Hu, Chao Li, Dengfeng Zhang. Interactions of dynamic supercritical CO2 fluid with different rank moisture-equilibrated coals: Implications for CO2 sequestration in coal seams [J]. Chinese Journal of Chemical Engineering, 2021, 35(7): 288-301. |
[14] | M. Veera Krishna. Radiation-absorption, chemical reaction, Hall and ion slip impacts on magnetohydrodynamic free convective flow over semi-infinite moving absorbent surface [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 40-52. |
[15] | Mohammad Sadegh Sharafi, Mehdi Ghasemi, Mohammad Ahmadi, Alireza Kazemi. An experimental approach for measuring carbon dioxide diffusion coefficient in water and oil under supercritical conditions [J]. Chinese Journal of Chemical Engineering, 2021, 34(6): 160-170. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||