Chinese Journal of Chemical Engineering ›› 2022, Vol. 42 ›› Issue (2): 1-9.DOI: 10.1016/j.cjche.2021.08.013
Tongan Yan1, Minman Tong2, Qingyuan Yang1, Dahuan Liu1, Yandong Guo3, Chongli Zhong4
Received:
2021-05-29
Revised:
2021-08-14
Online:
2022-03-30
Published:
2022-02-28
Contact:
Yandong Guo,E-mail:guoyandong@qymail.bhu.edu.cn;Chongli Zhong,E-mail:zhongchongli@tiangong.edu.cn
Supported by:
Tongan Yan1, Minman Tong2, Qingyuan Yang1, Dahuan Liu1, Yandong Guo3, Chongli Zhong4
通讯作者:
Yandong Guo,E-mail:guoyandong@qymail.bhu.edu.cn;Chongli Zhong,E-mail:zhongchongli@tiangong.edu.cn
基金资助:
Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites[J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 1-9.
Tongan Yan, Minman Tong, Qingyuan Yang, Dahuan Liu, Yandong Guo, Chongli Zhong. Large-scale simulations of CO2 diffusion in metal-organic frameworks with open Cu sites[J]. 中国化学工程学报, 2022, 42(2): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2021.08.013
[1] M. Aresta, A. Dibenedetto, A. Angelini, Catalysis for the valorization of exhaust carbon:From CO2 to chemicals, materials, and fuels. Technological use of CO2, Chem. Rev. 114 (3) (2014) 1709-1742 [2] W.R. Lee, S.Y. Hwang, D.W. Ryu, K.S. Lim, S.S. Han, D. Moon, J. Choi, C.S. Hong, Diamine-functionalized metal-organic framework:Exceptionally high CO2 capacities from ambient air and flue gas, ultrafast CO2 uptake rate, and adsorption mechanism, Energy Environ. Sci. 7 (2) (2014) 744-751 [3] Y.J. Zhao, L.L. Zheng, D. Jiang, W. Xia, X.T. Xu, Y. Yamauchi, J.P. Ge, J. Tang, Nanoengineering metal-organic framework-based materials for use in electrochemical CO2 reduction reactions, Small 17 (16) (2021) 2006590 [4] Y.S. Bae, R.Q. Snurr, Development and evaluation of porous materials for carbon dioxide separation and capture, Angew. Chem. Int. Ed. 50 (49) (2011) 11586-11596 [5] J. Liu, P.K. Thallapally, B.P. McGrail, D.R. Brown, J. Liu, Progress in adsorption-based CO2 capture by metal-organic frameworks, Chem. Soc. Rev. 41 (6) (2012) 2308-2322 [6] K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.H. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks, Chem. Rev. 112 (2) (2012) 724-781 [7] M.M.F. Hasan, E.L. First, F. Boukouvala, C.A. Floudas, A multi-scale framework for CO2 capture, utilization, and sequestration:CCUS and CCU, Comput. Chem. Eng. 81 (2015) 2-21 [8] Z.B. Bao, G.G. Chang, H.B. Xing, R. Krishna, Q.L. Ren, B.L. Chen, Potential of microporous metal-organic frameworks for separation of hydrocarbon mixtures, Energy Environ. Sci. 9 (12) (2016) 3612-3641 [9] V. Benoit, R.S. Pillai, A. Orsi, P. Normand, H. Jobic, F. Nouar, P. Billemont, E. Bloch, S. Bourrelly, T. Devic, P.A. Wright, G. de Weireld, C. Serre, G. Maurin, P.L. Llewellyn, MIL-91(Ti), a small pore metal-organic framework which fulfils several criteria:An upscaled green synthesis, excellent water stability, high CO2 selectivity and fast CO2 transport, J. Mater. Chem. A 4 (4) (2016) 1383-1389 [10] Q.G. Zhai, X.H. Bu, X. Zhao, D.S. Li, P.Y. Feng, Pore space partition in metal-organic frameworks, Accounts Chem. Res. 50 (2) (2017) 407-417 [11] H. Furukawa, K.E. Cordova, M. O'Keeffe, O.M. Yaghi, The chemistry and applications of metal-organic frameworks, Science 341 (6149) (2013) 1230444 [12] G. Maurin, C. Serre, A. Cooper, G. Férey, The new age of MOFs and of their porous-related solids, Chem. Soc. Rev. 46 (11) (2017) 3104-3107 [13] S.T. Meek, J.A. Greathouse, M.D. Allendorf, Metal-organic frameworks:A rapidly growing class of versatile nanoporous materials, Adv. Mater. 23 (2) (2011) 249-267 [14] H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O'Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science 329 (5990) (2010) 424-428 [15] O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities, Nat. Chem. 2 (11) (2010) 944-948 [16] O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal-organic framework materials with ultrahigh surface areas:is the sky the limit?J. Am. Chem. Soc. 134 (36) (2012) 15016-15021 [17] R. Grünker, V. Bon, P. Müller, U. Stoeck, S. Krause, U. Mueller, I. Senkovska, S. Kaskel, A new metal-organic framework with ultra-high surface area, Chem. Commun. 50 (26) (2014) 3450 [18] T.C. Wang, W. Bury, D.A. Gómez-Gualdrón, N.A. Vermeulen, J.E. Mondloch, P. Deria, K.N. Zhang, P.Z. Moghadam, A.A. Sarjeant, R.Q. Snurr, J.F. Stoddart, J.T. Hupp, O.K. Farha, Ultrahigh surface area zirconium MOFs and insights into the applicability of the BET theory, J. Am. Chem. Soc. 137 (10) (2015) 3585-3591 [19] H.K. Knuutila, R. Rennemo, A.F. Ciftja, New solvent blends for post-combustion CO2 capture, Green Energy Environ. 4 (4) (2019), 439-452 [20] B. Szczęśniak, J. Choma, Graphene-containing microporous composites for selective CO2 adsorption, Microporous Mesoporous Mater. 292 (2020) 109761 [21] M. Asgari, A. Streb, M. van der Spek, W. Queen, M. Mazzotti, Synergistic material and process development:Application of a metal-organic framework, Cu-TDPAT, in single-cycle hydrogen purification and CO2 capture from synthesis gas, Chem. Eng. J. 414 (2021) 128778 [22] Z. Niu, X. Cui, T. Pham, G. Verma, P.C. Lan, C. Shan, H. Xing, K.A. Forrest, S. Suepaul, B. Space, A. Nafady, A.M. Al-Enizi, S. Ma, A MOF-based ultra-strong acetylene nano-trap for highly efficient C2H2/CO2 separation, Angew. Chem. Int. Ed. 60 (10) (2021) 5283-5288 [23] R.M.L. Helberg, Z. Dai, L. Ansaloni, L. Deng, PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes:Synergistic enhancement of CO2 separation performance, Green Energy Environ. 5 (1) (2020) 59-68 [24] S. Chen, N. Behera, C. Yang, Q.B. Dong, B.S. Zheng, Y.Y. Li, Q. Tang, Z.X. Wang, Y.Q. Wang, J.G. Duan, A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation, Nano Res. 14 (2) (2021) 546-553 [25] K.L. Yao, Y.J. Xia, J. Li, N. Wang, J.R. Han, C.C. Gao, M. Han, G.Q. Shen, Y.C. Liu, A. Seifitokaldani, X.H. Sun, H.Y. Liang, Metal-organic framework derived copper catalysts for CO2 to ethylene conversion, J. Mater. Chem. A 8 (22) (2020) 11117-11123 [26] L. Majidi, A. Ahmadiparidari, N.N. Shan, S.N. Misal, K. Kumar, Z.H. Huang, S. Rastegar, Z. Hemmat, X.D. Zou, P. Zapol, J. Cabana, L.A. Curtiss, A. Salehi-Khojin, 2D copper tetrahydroxyquinone conductive metal-organic framework for selective CO2 electrocatalysis at low overpotentials, Adv. Mater. 33 (10) (2021) 2004393 [27] D. Chen, L. Xu, H. Liu, J. Yang, Rough-surfaced bimetallic copper-palladium alloy multicubes as highly bifunctional electrocatalysts for formic acid oxidation and oxygen reduction, Green Energy Environ. 4 (3) (2019) 254-263 [28] T.M. Tovar, J.J. Zhao, W.T. Nunn, H.F. Barton, G.W. Peterson, G.N. Parsons, M.D. LeVan, Diffusion of CO2 in large crystals of Cu-BTC MOF, J. Am. Chem. Soc. 138 (36) (2016) 11449-11452 [29] F. Salles, H. Jobic, A. Ghoufi, P. Llewellyn, C. Serre, S. Bourrelly, G. Férey, G. Maurin, Transport diffusivity of CO2 in the highly flexible metal-organic framework MIL-53(Cr), Angew. Chem. Int. Ed. 48 (44) (2009) 8335-8339 [30] Z.B. Bao, S. Alnemrat, L. Yu, I. Vasiliev, Q.L. Ren, X.Y. Lu, S.G. Deng, Kinetic separation of carbon dioxide and methane on a copper metal-organic framework, J. Colloid Interface Sci. 357 (2) (2011) 504-509 [31] Q. Zhu, D. Yang, H. Liu, X. Sun, C. Chen, J. Bi, J. Liu, H. Wu, B. Han, Hollow metal-organic-framework-mediated in situ architecture of copper dendrites for enhanced CO2 electroreduction, Angew. Chem. Int. Ed. 59 (23) (2020) 8896-8901 [32] J.Y. Liu, L.W. Peng, Y. Zhou, L. Lv, J. Fu, J. Lin, D. Guay, J.L. Qiao, Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction, ACS Sustainable Chem. Eng. 7 (18) (2019) 15739-15746 [33] A.L. Dzubak, L.C. Lin, J. Kim, J.A. Swisher, R. Poloni, S.N. Maximoff, B. Smit, L. Gagliardi, Ab initio carbon capture in open-site metal-organic frameworks, Nat. Chem. 4 (10) (2012) 810-816 [34] L. Liu, L. Wang, D.H. Liu, Q.Y. Yang, C.L. Zhong, High-throughput computational screening of Cu-MOFs with open metal sites for efficient C2H2/C2H4 separation, Green Energy Environ. 5 (3) (2020) 333-340 [35] Y.G. Chung, J. Camp, M. Haranczyk, B.J. Sikora, W. Bury, V. Krungleviciute, T. Yildirim, O.K. Farha, D.S. Sholl, R.Q. Snurr, Computation-ready, experimental metal-organic frameworks:A tool to enable high-throughput screening of nanoporous crystals, Chem. Mater. 26 (21) (2014) 6185-6192 [36] H. Daglar, S. Keskin, Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations, Coord. Chem. Rev. 422 (2020) 213470 [37] T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater. 149 (1) (2012) 134-141 [38] J.G. Harris, K.H. Yung, Carbon dioxide's liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model, J. Phys. Chem. 99 (31) (1995) 12021-12024 [39] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (4A) (1965) A1133 [40] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem. 27 (15) (2006) 1787-1799 [41] C. Zhang, L. Wang, G. Maurin, Q.Y. Yang, In silico screening of MOFs with open copper sites for C2H2/CO2 separation, AIChE J. 64 (11) (2018) 4089-4096 [42] D. Frenkel, B. Smit, Understanding Molecular Simulation:From Algorithms to Applications, Elsevier, Amsterdam, 2001 [43] C.E. Wilmer, K.C. Kim, R.Q. Snurr, An extended charge equilibration method, J. Phys. Chem. Lett. 3 (17) (2012) 2506-2511 [44] G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Explicit reversible integrators for extended systems dynamics, Mol. Phys. 87 (5) (1996) 1117-1157 [45] F.J. Keil, R. Krishna, M.O. Coppens, Modeling of diffusion in zeolites, Rev. Chem. Eng. 16 (2) (2000) 71-197 [46] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98 (45) (1994) 11623-11627 [47] A.D. McLean, G.S. Chandler, Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18, J. Chem. Phys. 72 (10) (1980) 5639-5648 [48] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, J. Chem. Phys. 72 (1) (1980) 650-654 [49] C.K. Kim, J. Won, H.S. Kim, Y.S. Kang, H.G. Li, C.K. Kim, Density functional theory studies on the dissociation energies of metallic salts:Relationship between lattice and dissociation energies, J. Comput. Chem. 22 (8) (2001) 827-834 [50] Y. Yang, S.L. Shi, D.W. Niu, P. Liu, S.L. Buchwald, Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines, Science 349 (6243) (2015) 62-66 [51] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox, Gaussian 09, Revision B.01, Gaussian Inc., Wallingford CT, USA, 2010. [52] R. Dennington, T.A. Keith, J.M. Millam, GaussView, Version 5.0.8, Semichem Inc., Shawnee Mission, USA, 2008. [53] M. Fischer, F. Hoffmann, M. Fröba, New microporous materials for acetylene storage and C2H2/CO2 separation:Insights from molecular simulations, ChemPhysChem 11 (10) (2010) 2220-2229 [54] T. Watanabe, S. Keskin, S. Nair, D.S. Sholl, Computational identification of a metal organic framework for high selectivity membrane-based CO2/CH4 separations:Cu(hfipbb)(H2hfipbb)0.5, Phys. Chem. Chem. Phys. 11 (48) (2009) 11389 [55] S. Nandi, R. Maity, D. Chakraborty, H. Ballav, R. Vaidhyanathan, Preferential adsorption of CO2 in an ultramicroporous MOF with cavities lined by basic groups and open-metal sites, Inorg. Chem. 57 (9) (2018) 5267-5272 [56] Z. Deng, T. Wan, D. Chen, W. Ying, Y.J. Zeng, Y. Yan, X. Peng, Photothermal-responsive microporous nanosheets confined ionic liquid for efficient CO2 separation, Small 16 (34) (2020) 2002699 [57] E.L. First, C.A. Floudas, MOFomics:Computational pore characterization of metal-organic frameworks, Microporous Mesoporous Mater. 165 (2013) 32-39 [58] H. Furukawa, Y.B. Go, N. Ko, Y.K. Park, F.J. Uribe-Romo, J. Kim, M. O'Keeffe, O.M. Yaghi, Isoreticular expansion of metal-organic frameworks with triangular and square building units and the lowest calculated density for porous crystals, Inorg. Chem. 50 (18) (2011) 9147-9152 [59] R. Poloni, K. Lee, R.F. Berger, B. Smit, J.B. Neaton, Understanding trends in CO2 adsorption in metal-organic frameworks with open-metal sites, J. Phys. Chem. Lett. 5 (5) (2014) 861-865 |
[1] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[2] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 155-164. |
[3] | Jindong Dai, Chi Zhai, Jiali Ai, Guangren Yu, Haichao Lv, Wei Sun, Yongzhong Liu. A cellular automata framework for porous electrode reconstruction and reaction-diffusion simulation [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 262-274. |
[4] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[5] | Tatyana P. Adamova, Sergey S. Skiba, Andrey Yu. Manakov, Sergey Y. Misyura. Growth rate of CO2 hydrate film on water–oil and water–gaseous CO2 interface [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 266-272. |
[6] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[7] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
[8] | Bowen Jiang, Jia Liu, Guoqiang Yang, Zhibing Zhang. Efficient conversion of CO2 into cyclic carbonates under atmospheric by halogen and metal-free poly(ionic liquid)s [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 202-211. |
[9] | Mingdong Sun, Dongxin Pan, Tingting Ye, Jing Gu, Yu Zhou, Jun Wang. Ionic porous polyamide derived N-doped carbon towards highly selective electroreduction of CO2 [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 212-221. |
[10] | Yu Wang, Qunfeng Zhang, Xinlei Liu, Junqi Weng, Guanghua Ye, Xinggui Zhou. Probing deactivation by coking in catalyst pellets for dry reforming of methane using a pore network model [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 293-303. |
[11] | Pan Huang, Zekai Zhang, Yuxin Chen, Changwei Liu, Yong Zhang, Cheng Lian, Yajun Ding, Honglai Liu. Multi-scale simulation of diffusion behavior of deterrent in propellant [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 29-35. |
[12] | Mengge Shang, Jing Zhang, Jinqiang Sun, Shimo Yu, Feng Hua, Xiaoxu Xuan, Xun Sun, Serguei Filatov, Xibin Yi. Amine-functionalized mesoporous UiO-66 aerogel for CO2 adsorption [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 36-43. |
[13] | Xianglin Liu, Minjie Xu, Chenxi Cao, Zixu Yang, Jing Xu. Effects of zinc on χ-Fe5C2 for carbon dioxide hydrogenation to olefins: Insights from experimental and density function theory calculations [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 206-214. |
[14] | Zhongyao Zhang, Ming Gao, Xiaopeng Chen, Xiaojie Wei, Jiezhen Liang, Chenghong Wu, Linlin Wang. The Joule–Thomson effect of (CO2 + H2) binary system relevant to gas switching reforming with carbon capture and storage (CCS) [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 215-231. |
[15] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 316-322. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||