Chin.J.Chem.Eng. ›› 2017, Vol. 25 ›› Issue (11): 1598-1605.DOI: 10.1016/j.cjche.2017.05.008
• Special Issue of Membranes and Membrane Processes based on Confined Mass Transfer • Previous Articles Next Articles
Zhuang Liu1, Wei Wang1,2, Xiaojie Ju1,2, Rui Xie1,2, Liangyin Chu1,2,3
Received:
2016-11-29
Revised:
2017-05-26
Online:
2018-01-18
Published:
2017-11-28
Contact:
Liangyin Chu,E-mail address:chuly@scu.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21490582, 21506127).
Zhuang Liu1, Wei Wang1,2, Xiaojie Ju1,2, Rui Xie1,2, Liangyin Chu1,2,3
通讯作者:
Liangyin Chu,E-mail address:chuly@scu.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21490582, 21506127).
Zhuang Liu, Wei Wang, Xiaojie Ju, Rui Xie, Liangyin Chu. Graphene-based membranes for molecular and ionic separations in aqueous environments[J]. Chin.J.Chem.Eng., 2017, 25(11): 1598-1605.
Zhuang Liu, Wei Wang, Xiaojie Ju, Rui Xie, Liangyin Chu. Graphene-based membranes for molecular and ionic separations in aqueous environments[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1598-1605.
[1] W.J. Koros, Evolving beyond the thermal age of separation processes:Membranes can lead the way, AIChE J. 50(10) (2004) 2326-2334. [2] D.L. Gin, R.D. Noble, Designing the next generation of chemical separation membranes, Science 332(6030) (2011) 674-676. [3] B.E. Logan, M. Elimelech, Membrane-based processes for sustainable power generation using water, Nature 488(7411) (2012) 313-319. [4] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452(7185) (2008) 301-310. [5] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(1) (2008) 390-400. [6] S. Karan, Z. Jiang, A.G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science 348(6241) (2015) 1347-1351. [7] G.P. Liu, W.Q. Jin, N.P. Xu, Two-dimensional-material membranes:A new family of high-performance separation membranes, Angew. Chem. Int. Ed. 55(2016) 2-16. [8] A.K. Geim, Graphene:Status and prospects, Science 324(5934) (2009) 1530-1534. [9] J.S. Bunch, S.S. Verbridge, J.S. Alden, A.M. Van Der Zande, J.M. Parpia, H.G. Craighead, P.L. McEuen, Impermeable atomic membranes from graphene sheets, Nano Lett. 8(8) (2008) 2458-2462. [10] W. Yuan, J. Chen, G. Shi, Nanoporous graphene materials, Mater. Today 17(2) (2014) 77-85. [11] G. Liu, W. Jin, N. Xu, Graphene-based membranes, Chem. Soc. Rev. 44(15) (2015) 5016-5030. [12] C. Sun, B. Wen, B. Bai, Recent advances in nanoporous graphene membrane for gas separation and water purification, Sci. Bull. 60(21) (2015) 1807-1823. [13] D. An, L. Yang, T.J. Wang, B. Liu, Separation performance of graphene oxide membrane in aqueous solution, Ind. Eng. Chem. Res. 55(17) (2016) 4803-4810. [14] Q. Xu, H. Xu, J. Chen, Y. Lv, Dong C. Sreeprasad, T.S., Graphene and graphene oxide:Advanced membranes for gas separation and water purification, Inorg. Chem. Front. 2(5) (2015) 417-424. [15] M. Miculescu, V.K. Thakur, F. Miculescu, S.I. Voicu, Graphene-based polymer nanocomposite membranes:A review, Polym. Adv. Technol. 27(2016) 844-859. [16] P. Sun, K. Wang, H. Zhu, Recent developments in graphene-based membranes:Structure, mass-transport mechanism and potential applications, Adv. Mater. 28(2016) 2287-2310. [17] A. Alexiadis, S. Kassinos, Molecular simulation of water in carbon nanotubes, Chem. Rev. 108(12) (2008) 5014-5034. [18] M. Krueger, S. Berg, D.A. Stone, E. Strelcov, D.A. Dikin, J. Kim, L.J. Cote, J.X. Huang, A. Kolmakov, Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples, ACS Nano 5(12) (2011) 10047-10054. [19] C.J. Russo, J.A. Golovchenko, Atom-by-atom nucleation and growth of graphene nanopores, Proc. Natl. Acad. Sci. U. S. A. 109(16) (2012) 5953-5957. [20] D. Zhou, Y. Cui, P.W. Xiao, M.Y. Jiang, B.H. Han, A general and scalable synthesis approach to porous graphene, Nat. Commun. 5(2014) 4716. [21] R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nat. Commun. 7(2016) 11408. [22] X. Zhao, C.M. Hayner, M.C. Kung, H.H. Kung, Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications, ACS Nano 5(11) (2011) 8739-8749. [23] Y. Yamada, K. Murota, R. Fujita, J. Kim, A. Watanabe, M. Nakamura, S. Sato, K. Hata, P. Ercius, J. Ciston, C.Y. Song, K. Kim, W. Regan, W. Gannett, A. Zettl, Subnanometer vacancy defects introduced on graphene by oxygen gas, J. Am. Chem. Soc. 136(6) (2014) 2232-2235. [24] Y. Xu, Z. Lin, X. Zhong, X. Huang, N.O. Weiss, Y. Huang, X. Duan, Holey graphene frameworks for highly efficient capacitive energy storage, Nat. Commun. 5(2014) 4554. [25] K. Sint, B. Wang, P. Král, Selective ion passage through functionalized graphene nanopores, J. Am. Chem. Soc. 130(49) (2008) 16448-16449. [26] Z. He, J. Zhou, X. Lu, B. Corry, Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+, ACS Nano 7(11) (2013) 10148-10157. [27] S. Zhao, J. Xue, W. Kang, Ion selection of charge-modified large nanopores in a graphene sheet, J. Chem. Phys. 139(11) (2013) 114702. [28] S.C. O'Hern, M.S. Boutilier, J.C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, R. Karnik, Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes, Nano Lett. 14(3) (2014) 1234-1241. [29] D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H. Dommett, G. Evmenenko, S.T. Nguyen, R.S. Ruoff, Preparation and characterization of graphene oxide paper, Nature 448(7152) (2007) 457-460. [30] L. Qiu, X. Zhang, W. Yang, Y. Wang, G.P. Simon, D. Li, Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration, Chem. Commun. 47(20) (2011) 5810-5812. [31] H.W. Kim, H.W. Yoon, S.M. Yoon, B.M. Yoo, B.K. Ahn, Y.H. Cho, H.J. Shin, H. Yang, U. Paik, S. Kwon, J.Y. Choi, H.B. Park, Selective gas transport through few-layered graphene and graphene oxide membranes, Science 342(6154) (2013) 91-95. [32] A. Akbari, P. Sheath, S.T. Martin, D.B. Shinde, M. Shaibani, P.C. Banerjee, R. Tkacz, D. Bhattacharyya, M. Majumder, Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide, Nat. Commun. 7(2016) 10891. [33] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1) (2010) 228-240. [34] N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan, Graphene oxide:Structural analysis and application as a highly transparent support for electron microscopy, ACS Nano 3(9) (2009) 2547-2556. [35] G. Eda, M. Chhowalla, Chemically derived graphene oxide:Towards large-area thinfilm electronics and optoelectronics, Adv. Mater. 22(22) (2010) 2392-2415. [36] R.R. Nair, H.A. Wu, P.N. Jayaram, I.V. Grigorieva, A.K. Geim, Unimpeded permeation of water through helium-leak-tight graphene-based membranes, Science 335(6067) (2012) 442-444. [37] A. Buchsteiner, A. Lerf, J. Pieper, Water dynamics in graphite oxide investigated with neutron scattering, J. Phys. Chem. B 110(45) (2006) 22328-22338. [38] N. Giovambattista, P.J. Rossky, P.G. Debenedetti, Phase transitions induced by nanoconfinement in liquid water, Phys. Rev. Lett. 102(5) (2009), 050603. [39] R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Precise and ultrafast molecular sieving through graphene oxide membranes, Science 343(6172) (2014) 752-754. [40] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23(29) (2013) 3693-3700. [41] L. Qiu, X. Zhang, W. Yang, Y. Wang, G.P. Simon, D. Li, Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration, Chem. Commun. 47(20) (2011) 5810-5812. [42] H. Liu, H. Wang, X. Zhang, Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification, Adv. Mater. 27(2) (2015) 249-254. [43] C.N. Yeh, K. Raidongia, J. Shao, Q.H. Yang, J. Huang, On the origin of the stability of graphene oxide membranes in water, Nat. Chem. 7(2) (2015) 166-170. [44] Y. Liang, H. Hilal, P. Langston, V. Starov, Interaction forces between colloidal particles in liquid:Theory and experiment, Adv. Colloid Interf. Sci. 134-135(2007) 151-166. [45] Y.H. Xi, J.Q. Hu, Z. Liu, R. Xie, X.J. Ju, W. Wang, L.Y. Chu, Graphene oxide membranes with strong stability in aqueous solutions and controllable lamellar spacing, ACS Appl. Mater. Interfaces 8(24) (2016) 15557-15566. [46] S. Park, K.S. Lee, G. Bozoklu, W. Cai, S.T. Nguyen, R.S. Ruoff, Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical crosslinking, ACS Nano 2(3) (2008) 572-578. [47] Z. An, O.C. Compton, K.W. Putz, L.C. Brinson, S.T. Nguyen, Bio-inspired borate crosslinking in ultra-stiff graphene oxide thin films, Adv. Mater. 23(33) (2011) 3842-3846. [48] Y. Gao, L.Q. Liu, S.Z. Zu, K. Peng, D. Zhou, B.H. Han, Z. Zhang, The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers, ACS Nano 5(3) (2011) 2134-2141. [49] S. Stankovich, D.A. Dikin, O.C. Compton, G.H.B. Dommett, R.S. Ruoff, S.T. Nguyen, Systematic post-assembly modification of graphene oxide paper with primary alkylamines, Chem. Mater. 22(14) (2010) 4153-4157. [50] M. Hu, B.X. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol. 47(8) (2013) 3715-3723. [51] Y. Tian, Y. Cao, Y. Wang, W. Yang, J. Feng, Realizing ultrahigh modulus and high strength of macroscopic graphene oxide papers through crosslinking of mussel-inspired polymers, Adv. Mater. 25(21) (2013) 2980-2983. [52] Y. Cui, Q.Y. Cheng, H. Wu, Z. Wei, B.H. Han, Graphene oxide-based benzimidazolecrosslinked networks for high-performance supercapacitors, Nanoscale 5(18) (2013) 8367-8374. [53] W.S. Hung, C.H. Tsou, M. De Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26(9) (2014) 2983-2990. [54] S. Park, D.A. Dikin, S.T. Nguyen, R.S. Ruoff, Graphene oxide sheets chemically crosslinked by polyallylamine, J. Phys. Chem. C 113(36) (2009) 15801-15804. [55] K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, High-nanofillercontent graphene oxide-polymer nanocomposites via vacuum-assisted selfassembly, Adv. Funct. Mater. 20(19) (2010) 3322-3329. [56] B. Mi, Graphene oxide membranes for ionic and molecular sieving, Science 343(6172) (2014) 740-742. [57] K. Huang, G. Liu, Y. Lou, Z. Dong, J. Shen, W. Jin, A graphene oxide membrane with highly selective molecular separation of aqueous organic solution, Angew. Chem. Int. Ed. 53(27) (2014) 6929-6932. [58] Anonymous, Graphene opens up to new applications, Nat. Nanotechnol. 10(5) (2015) 381. [59] K. Sint, B. Wang, P. Král, Selective ion passage through functionalized graphene nanopores, J. Am. Chem. Soc. 130(49) (2008) 16448-16449. [60] D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12(7) (2012) 3602-3608. [61] D. Konatham, J. Yu, T.A. Ho, A. Striolo, Simulation insights for graphene-based water desalination membranes, Langmuir 29(38) (2013) 11884-11897. [62] D. Cohen-Tanugi, R.K. McGovern, S.H. Dave, J.H. Lienhard, J.C. Grossman, Quantifying the potential of ultra-permeable membranes for water desalination, Energy Environ. Sci. 7(3) (2014) 1134-1141. [63] D. Cohen-Tanugi, J.C. Grossman, Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination, J. Chem. Phys. 141(7) (2014), 074704. [64] S.C. O'Hern, M.S. Boutilier, J.C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, R. Karnik, Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes, Nano Lett. 14(3) (2014) 1234-1241. [65] S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Water desalination using nanoporous single-layer graphene, Nat. Nanotechnol. 10(5) (2015) 459-464. [66] J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater. 1(5) (2016) 16018. [67] R.C. Rollings, A.T. Kuan, J.A. Golovchenko, Ion selectivity of graphene nanopores, Nat. Commun. 7(2016) 11408. [68] Z. He, J. Zhou, X. Lu, B. Corry, Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+, ACS Nano 7(11) (2013) 10148-10157. [69] Y. Kang, Z. Zhang, H. Shi, J. Zhang, L. Liang, Q. Wang, H. Agren, Y. Tu, Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores, Nanoscale 6(18) (2014) 10666-10672. [70] J. Guo, J. Lee, C.I. Contescu, N.C. Gallego, S.T. Pantelides, S.J. Pennycook, B.A. Moyer, M.F. Chisholm, Crown ethers in graphene, Nat. Commun. 5(2014) 5389. [71] Z. Jia, W. Shi, Tailoring permeation channels of graphene oxide membranes for precise ion separation, Carbon 101(2016) 290. [72] Z. Li, Y. Liu, Y. Zhao, X. Zhang, L. Qian, L. Tian, J. Bai, W. Qi, H. Yao, B. Gao, J. Liu, W. Wu, H. Qiu, Selective separation of metal ions via monolayer nanoporous graphene with carboxyl groups, Anal. Chem. 88(2016) 10002. [73] M.Y. Lim, Y.S. Choi, J. Kim, K. Kim, H. Shin, J.J. Kim, D.M. Shin, J.C. Lee, Cross-linked graphene oxide membrane having high ion selectivity and antibacterial activity prepared using tannic acid-functionalized graphene oxide and polyethyleneimine, J. Membr. Sci. 521(2017) 1. [74] P. Sun, H. Liu, K. Wang, M. Zhong, D. Wu, H. Zhu, Selective ion transport through functionalized graphene membranes based on delicate ion-graphene interactions, J. Phys. Chem. C 118(2014) 19396. |
[1] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 69-79. |
[2] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[3] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[4] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 9-15. |
[5] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 135-145. |
[6] | Chaoyi Yin, Jingyuan Ma, Jian Qiu, Ruifang Liu, Long Ba. Mass-producible low-cost flexible electronic fabrics for azo dye wastewater treatment by electrocoagulation [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 222-230. |
[7] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 103-111. |
[8] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 256-265. |
[9] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 291-305. |
[10] | Hui Yi Leong, Xiao-Qian Fu, Xiang-Yu Liu, Shan-Jing Yao, Dong-Qiang Lin. Characterisation and separation of infectious bursal disease virus-like particles using aqueous two-phase systems [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 72-78. |
[11] | Yujia Cui, Zhiqiang Tan, Yanan Wang, Shuxian Shi, Xiaonong Chen. One-step crosslinking preparation of tannic acid particles for the adsorption and separation of cationic dyes [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 309-318. |
[12] | Yuxi Chai, Yanan Zhang, Yannan Tan, Zhiwei Li, Huangzhao Wei, Chenglin Sun, Haibo Jin, Zhao Mu, Lei Ma. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 80-88. |
[13] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
[14] | Wufeng Wu, Xilu Hong, Jiang Fan, Yanying Wei, Haihui Wang. Research progress on the substrate for metal–organic framework (MOF) membrane growth for separation [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 299-313. |
[15] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 170
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1607
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||