[1] S. Nukiyama, The maximum and minimum values of the heat transmitted from metal to boiling water under atmospheric pressure, J. Jpn Soc. Mech. Eng. 37(1934) 367-374.[2] R. Kamatchi, S. Venkatachalapathy, Parametric study of pool boiling heat transfer with nanofluids for the enhancement of critical heat flux:a review, Int. J. Therm. Sci. 87(2015) 228-240.[3] A. Suriyawong, S. Wongwises, Nucleate pool boiling heat transfer characteristics of TiO2-water nanofluids at very low concentrations, Exp. Thermal Fluid Sci. 34(2010) 992-999.[4] Ahmad Azari, Mansour Kalbasi, Masoud Derakhshandeh, Masoud Rahimi, An experimental study on nanofluids convective heat transfer through a straight tube under constant heat flux, Chin. J. Chem. Eng. 21(10) (2013) 1082-1088.[5] A. Rainho Neto, J.L.G. Oliveira, J.C. Passos, Heat transfer coefficient and critical heat flux during nucleate pool boiling of water in the presence of nanoparticles of alumina, maghemite and CNTs, Appl. Therm. Eng. 111(2017) 1493-1506.[6] M. Khoshvaght-Aliabadi, M.H. Akbari, F. Hormozi, An empirical study on vortexgenerator insert fitted in tubular heat exchangers with dilute Cu-water nanofluid flow, Chin. J. Chem. Eng. 24(2016) 728-736.[7] R. Kamatchi, S. Venkatachalapathy, C. Nithya, Experimental investigation and mechanism of critical heat flux enhancement in pool boiling heat transfer with nanofluids, Heat Mass Transf. 52(2016) 2357-2366.[8] M.M. Sarafraz, F. Hormozi, S.M. Peyghambarzadeh, Pool boiling heat transfer to aqueous alumina nano-fluids on the plain and concentric circular micro-structured (CCM) surfaces, Exp. Thermal Fluid Sci. 72(2016) 125-139.[9] Y. Haramura, Y. Katto, A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids, Int. J. Heat Mass Transf. 26(1983) 389-399.[10] S.G. Khandlikar, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, ASME J. Heat Transf. 123(2001) 1071-1079.[11] S.M. Kwark, Ratan Kumar, Gilberto Moreno, Jaisuk Yoo, Seung M. You, Pool boiling characteristics of low concentration nanofluids, Int. J. Heat Mass Transf. 53(2010) 972-981.[12] H. Kim, M. Kim, Experimental study of the characteristics and mechanism of pool boiling CHF enhancement using nanofluids, Heat Mass Transf. 45(2009) 991-998.[13] H.S. Ahn, J.M. Kim, M. Kaviany, M.H. Kim, Pool boiling experiments in reduced graphene oxide colloids, part I-boiling characteristics, Int. J. Heat Mass Transf. 74(2014) 501-512.[14] S.D. Park, S. Wonlee, S. Kang, I.C. Bang, J.H. Kim, H.S. Shin, D.W. Lee, D. Won Lee, Effects of nanofluids containing graphene/graphene-oxide nanosheets on critical heat flux, Appl. Phys. Lett. 97(2010) (023103-023103-3).[15] W.S. Hummers, R.E. Offeman, Preparation of graphite oxide, J. Am. Chem. Soc. 80(1958) 1339.[16] Amartya Chakrabarti, Jun Lu, Jennifer C. Skrabutenas, Tao Xu, Zhili Xiao, John A. Maguireb, Narayan S. Hosmane, Conversion of carbon dioxide to few-layer graphene, J. Mater. Chem. 21(2011) 9491-9493.[17] Yifan Dong, Shuo Li, Hongmei Xu, Mengyu Yan, Xiaoming Xu, Xiaocong Tian, Qing Liu, Liqiang Mai, Wrinkled-graphene enriched MoO3 nanobelts with increased conductivity and reduced stress for enhanced electrochemical performance, Phys. Chem. Chem. Phys. 15(2013) 17165-17170.[18] N. Zuber, Hydrodynamics Aspect of Heat Transfer PhD, Thesis UCLA, 1959.[19] Han Seo, Jae Hwan Chu, Soon-Yong Kwon, In Cheol Bang, Pool boiling CHF of reduced graphene oxide, graphene, and SiC-coated surfaces under highly wettable FC-72, Int. J. Heat Mass Transf. 82(2015) 490-502.[20] J.Y. Chang, S.M. You, Enhanced boiling heat transfer from microporous surfaces:effects of a coating composition and method, Int. J. Heat Mass Transf. 40(1997) 4449-4460.[21] Diane Marie Vazquez, Experimental Studies of the Heat Transfer Characteristics of Silica Nanoparticle Water-based Dispersion in Pool Boiling Using Nichrome Flat Ribbon and Wires, PhD Thesis University of Central Florida, 2008. |