[1] E.E. Cleland, I. Chuine, A. Menzel, H.A. Mooney, M.D. Schwartz, Shifting plant phenology in response to global change, Trends Ecol. Evol. 22(7) (2007) 357–365. [2] F. Berroug, E.K. Lakhal, M. El Omari, M. Faraji, H. El Qarnia, Thermal performance of a greenhouse with a phase change material north wall, Energy Build. 43(11) (2011) 3027–3035. [3] N.S. Lewis, Toward cost-effective solar energy use, Science 315(5813) (2007) 798–801. [4] Y.u. Hou, R. Vidu, P. Stroeve, Solar energy storage methods, Ind. Eng. Chem. Res. 50(15) (2011) 8954–8964. [5] L. Shi, X.Z. Wang, Y.W. Hu, Y.R. He, Y.Y. Yan, Solar-thermal conversion and steam generation: a review, Appl. Therm. Eng. 179(2020) 115691–115705. [6] A. Sharma, V.V. Tyagi, C.R. Chen, D. Buddhi, Review on thermal energy storage with phase change materials and applications, Renew. Sustain. Energy Rev. 13(2) (2009) 318–345. [7] M. Li, W. Wang, Z. Zhang, F. He, S. Yan, P.-J. Yan, R. Xie, X.-J. Ju, Z. Liu, L.-Y. Chu, Monodisperse Na2SO4 10H2O@SiO2 microparticles against supercooling and phase separation during phase change for efficient energy storage, Ind. Eng. Chem. Res. 56(12) (2017) 3297–3308. [8] V.D. Cao, S. Pilehvar, C. Salas-Bringas, A.M. Szczotok, T.Q. Bui, M. Carmona, J.F. Rodriguez, A.-L. Kjøniksen, Thermal analysis of geopolymer concrete walls containing microencapsulated phase change materials for building applications, Sol. Energy 178(2019) 295–307. [9] P. Schossig, H.M. Henning, S. Gschwander, T. Haussmann, Micro-encapsulated phase-change materials integrated into construction materials, Sol. Energy Mater. Sol. Cells 89(2-3) (2005) 297–306. [10] Y. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, From biomass to high performance solar–thermal and electric–thermal energy conversion and storage materials, J. Mater. Chem. A 2(21) (2014) 7759–7765. [11] M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology, Nat Nanotechnol 10(1) (2015) 25–34. [12] T.D. Kozai, A.L. Vazquez, Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: New Challenges and Opportunities, J Mater Chem B 3(25) (2015) 4965–4978. [13] G.-Q. Qi, C.-L. Liang, R.-Y. Bao, Z.-Y. Liu, W. Yang, B.-H. Xie, M.-B. Yang, Polyethylene glycol based shape-stabilized phase change material for thermal energy storage with ultra-low content of graphene oxide, Sol. Energy Mater. Sol. Cells 123(2014) 171–177. [14] X. Fang, L.-W. Fan, Q. Ding, X. Wang, X.-L. Yao, J.-F. Hou, Z.-T. Yu, G.-H. Cheng, Y.-C. Hu, K.-F. Cen, Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets, Energy Fuels 27(7) (2013) 4041–4047. [15] M. Li, A nano-graphite/paraffin phase change material with high thermal conductivity, Appl. Energy 106(2013) 25–30. [16] Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, Y. Fang, Preparation and thermal energy storage properties of paraffin/expanded graphite composite phase change material, Appl. Energy 91(1) (2012) 426–431. [17] K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, Hata, A black body absorber from vertically aligned single-walled carbon nanotubes, Proc. Natl. Acad. Sci. USA 106(15) (2009) 6044–6047. [18] M.E. Itkis, F. Borondics, A. Yu, R.C. Haddon, Bolometric infrared photoresponse of suspended single-walled carbon nanotube films, Science 312(5772) (2006) 413–416. [19] J. Lehman, A. Sanders, L. Hanssen, B. Wilthan, J. Zeng, C. Jensen, Very black infrared detector from vertically aligned carbon nanotubes and electric-field poling of lithium tantalate, Nano Lett. 10(9) (2010) 3261–3266. [20] R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M. Peres, A.K. Geim, Fine structure constant defines visual transparency of graphene, Science 320(5881) (2008) 1308. [21] X. Wu, G.Y. Chen, G. Owens, D.W. Chu, H.L. Xu, Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy, Mater. Today Energy 12(2019) 277–296. [22] L. Han, X. Jia, Z. Li, Z. Yang, G. Wang, G. Ning, Effective encapsulation of paraffin wax in carbon nanotube agglomerates for a new shape-stabilized phase change material with enhanced thermal-storage capacity and stability, Ind. Eng. Chem. Res. 57(39) (2018) 13026–13035. [23] Y.M. Wang, B.T. Tang, S.F. Zhang, Single-walled carbon nanotube/phase change material composites: Sunlight-driven, reversible, form-stable phase transitions for solar thermal energy storage, Adv. Funct. Mater. 23(35) (2013) 4354–4360. [24] S. Alay, C. Alkan, F. Göde, Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics, Thermochim. Acta 518(1-2) (2011) 1–8. [25] L. Sánchez, P. Sánchez, M. Carmona, A. de Lucas, J.F. Rodríguez, Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization, Colloid Polym. Sci. 286(8-9) (2008) 1019–1027. [26] D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev. 39(1) (2010) 228–240. [27] W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(6) (1958) 1339. [28] G. Li, X. Zhang, J. Wang, J. Fang, From anisotropic graphene aerogels to electron- and photo-driven phase change composites, J. Mater. Chem. A 4(2016) 17042–17049. [29] J. Yang, G.-Q. Qi, R.-Y. Bao, K. Yi, M. Li, L. Peng, Z. Cai, M.-B. Yang, D. Wei, W. Yang, Hybridizing graphene aerogel into three-dimensional graphene foam for high-performance composite phase change materials, Energy Storage Mater. 13(2018) 88–95. [30] S. Wu, T. Yan, Z. Kuai, W. Pan, Thermal conductivity enhancement on phase change materials for thermal energy storage: a review, Energy Storage Mater. 25(2020) 251–295. [31] J. Ge, L.-A. Shi, Y.-C. Wang, H.-Y. Zhao, H.-B. Yao, Y.-B. Zhu, Y. Zhang, H.-W. Zhu, H.-A. Wu, S.-H. Yu, Joule-heated graphene-wrapped sponge enables fast cleanup of viscous crude-oil spill, Nat. Nanotechnol. 12(5) (2017) 434–440. [32] J. Zhao, S. Pei, W. Ren, L. Gao, H.-M. Cheng, Efficient preparation of large-area graphene oxide sheets for transparent conductive films, ACS Nano 4(9) (2010) 5245–5252. [33] S.Y. Yu, X.D. Wang, D.Z. Wu, Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluation, Appl. Energy 114(2014) 632–643. [34] T. Do, Y.G. Ko, Y. Chun, U.S. Choi, Encapsulation of phase change material with water-absorbable shell for thermal energy storage, ACS Sustain. Chem. Eng. 3(11) (2015) 2874–2881. [35] H.e. Wang, J.P. Wang, X. Wang, W. Li, X. Zhang, Preparation and properties of microencapsulated phase change materials containing two-phase core materials, Ind. Eng. Chem. Res. 52(41) (2013) 14706–14712. [36] M. Maleki, P.T. Ahmadi, H. Mohammadi, H. Karimian, R. Ahmadi, H.B.M. Emrooz, Photo-thermal conversion structure by infiltration of paraffin in three dimensionally interconnected porous polystyrene-carbon nanotubes (PS-CNT) polyHIPE foam, Sol. Energy Mater. Sol. Cells 191(2019) 266–274. [37] S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide, Carbon 45(7) (2007) 1558–1565. [38] A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene, Nat. Nanotechnol. 8(4) (2013) 235–246. [39] G. Froehlicher, S. Berciaud, Raman spectroscopy of electrochemically gated graphene transistors: Geometrical capacitance, electron-phonon, electronelectron, and electron-defect scattering, Phys. Rev. B 91(20) (2015) 205413–205430. [40] H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D.L. Nika, A. Mulchandani, R.K. Lake, A.A. Balandin, Thermal conductivity of graphene with defects induced by electron beam irradiation, Nanoscale 8(30) (2016) 14608–14616. [41] W.C. Tian, W.H. Li, W.B. Yu, X.H. Liu, A review on lattice defects in graphene: types, generation, effects and regulation, Micromachines 8(5) (2017) 163–178. [42] M.R. Ammar, N. Galy, J.N. Rouzaud, N. Toulhoat, C.E. Vaudey, P. Simon, N. Moncoffre, Characterizing various types of defects in nuclear graphite using Raman scattering: Heat treatment, ion irradiation and polishing, Carbon 95(2015) 364–373. [43] J. Yang, G.Q. Qi, Y. Liu, R.Y. Bao, Z.Y. Liu, W. Yang, B.H. Xie, M.B. Yang, Hybrid graphene aerogels/phase change material composites: Thermal conductivity, shape-stabilization and light-to-thermal energy storage, Carbon 100(2016) 693–702. [44] W. Wang, X. Yang, Y. Fang, J. Ding, J. Yan, Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage, Appl. Energy 86(9) (2009) 1479–1483. [45] G. Li, G. Hong, D. Dong, W. Song, X. Zhang, Multiresponsive graphene-aerogeldirectedphase-change smartfibers, Adv. Mater.30(30) (2018) 1801754–1801762. [46] L. Chen, R. Zou, W. Xia, Z. Liu, Y. Shang, J. Zhu, Y. Wang, J. Lin, D. Xia, A. Cao, Electro- and photodriven phase change composites based on wax-infiltrated carbon nanotube sponges, ACS Nano 6(12) (2012) 10884–10892. [47] Y. Zhou, X. Liu, D. Sheng, C. Lin, F. Ji, L.i. Dong, S. Xu, H. Wu, Y. Yang, Polyurethane-based solid-solid phase change materials with in situ reduced graphene oxide for light-thermal energy conversion and storage, Chem. Eng. J. 338(2018) 117–125. [48] Y. Chen, Q.i. Zhang, X. Wen, H. Yin, J. Liu, A novel CNT encapsulated phase change material with enhanced thermal conductivity and photo-thermal conversion performance, Sol. Energy Mater. Sol. Cells 184(2018) 82–90. [49] B. Mu, M. Li, Fabrication and characterization of polyurethane-grafted reduced graphene oxide as solid-solid phase change materials for solar energy conversion and storage, Sol. Energy 188(2019) 230–238. [50] G. Cheng, X.Z. Wang, Y.R. He, 3D graphene paraffin composites based on sponge skeleton for photo thermal conversion and energy storage, Appl. Therm. Eng. 178(2020) 115560–115572. |