Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (3): 534-539.DOI: 10.1016/j.cjche.2017.07.016
• Catalysis, kinetics and reaction engineering • Previous Articles Next Articles
Shuying Chen, Rui Tu, Jun Li, Xiaohua Lu
Received:
2017-03-15
Revised:
2017-07-24
Online:
2018-04-18
Published:
2018-03-28
Contact:
Jun Li, Xiaohua Lu
Supported by:
Supported by the National Key Basic Research Program of China (2013CB733505, 2013CB733501), the National Natural Science Foundation of China (91334202), the Natural Science Foundation of Jiangsu Province of China (BK2012421, BK20130062), the Research Fund for the Doctoral Program of Higher Education of China (20123221120015), the Project for Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Shuying Chen, Rui Tu, Jun Li, Xiaohua Lu
通讯作者:
Jun Li, Xiaohua Lu
基金资助:
Supported by the National Key Basic Research Program of China (2013CB733505, 2013CB733501), the National Natural Science Foundation of China (91334202), the Natural Science Foundation of Jiangsu Province of China (BK2012421, BK20130062), the Research Fund for the Doctoral Program of Higher Education of China (20123221120015), the Project for Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Shuying Chen, Rui Tu, Jun Li, Xiaohua Lu. Pd catalysts supported on rGO-TiO2 composites for direct synthesis of H2O2: Modification of Pd2+/Pd0 ratio and hydrophilic property[J]. Chin.J.Chem.Eng., 2018, 26(3): 534-539.
Shuying Chen, Rui Tu, Jun Li, Xiaohua Lu. Pd catalysts supported on rGO-TiO2 composites for direct synthesis of H2O2: Modification of Pd2+/Pd0 ratio and hydrophilic property[J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 534-539.
[1] J.K. Edwards, G.J. Hutchings, Palladium and gold-palladium catalysts for the direct synthesis of hydrogen peroxide, Angew. Chem. Int. Ed. 47(2008) 9192-9198. [2] C. Samanta, Direct synthesis of hydrogen peroxide from hydrogen and oxygen:An overview of recent developments in the process, Appl. Catal. A Gen. 350(2008) 133-149. [3] R. Hage, A. Lienke, Applications of transition-metal catalysts to textile and woodpulp bleaching, Angew. Chem. Int. Ed. 45(2005) 206-222. [4] Y.Y. Lu, Y. Liu, B.W. Xia, W.Q. Zuo, Phenol oxidation by combined cavitation water jet and hydrogen peroxide, Chin. J. Chem. Eng. 20(4) (2012) 760-767. [5] V.R. Choudhary, C. Samanta, Role of chloride or bromide anions and protons for promoting the selective oxidation of H2 by O2 to H2O2 over supported Pd catalysts in an aqueous medium, J. Catal. 238(2006) 28-38. [6] C. Samanta, V.R. Choudhary, Direct formation of H2O2 from H2 and O2 and decomposition/hydrogenation of H2O2 in aqueous acidic reaction medium over halide-containing Pd/SiO2 catalytic system, Catal. Commun. 8(2007) 2222-2228. [7] V.R. Choudhary, P. Jana, Direct oxidation of H2 to H2O2 over different supported PdO catalysts in aqueous acidic medium:Influence of the reduction, calcination temperature and support of the catalyst on its net H2O2 formation activity, Catal. Commun. 9(2008) 1624-1629. [8] D.P. Dissanayake, J.H. Lunsford, The direct formation of H2O2 from H2 and O2 over colloidal palladium, J. Catal. 214(2003) 113-120. [9] Q. Liu, J. Lunsford, The roles of chloride ions in the direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst in a H2SO4/ethanol system, J. Catal. 239(2006) 237-243. [10] Q. Liu, J.C. Bauer, R.E. Schaak, J.H. Lunsford, Supported palladium nanoparticles:An efficient catalyst for the direct formation of H2O2 from H2 and O2, Angew. Chem. Int. Ed. 47(2008) 6221-6224. [11] P. Landon, P.J. Collier, A.J. Papworth, C.J. Kiely, G.J. Hutchings, Direct formation of hydrogen peroxide from H2/O2 using a gold catalyst, Chem. Commun. (2002) 2058-2059. [12] G. Li, J.K. Edwards, A.F. Carley, G.J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 and in situ oxidation using zeolite-supported catalysts, Catal. Commun. 8(2007) 247-250. [13] J.K. Edwards, E. Ntainjua, A.F. Carley, A. Herzing, C.J. Kiely, G.J. Hutchings, Direct synthesis of H2O2 from H2 and O2 over gold, palladium, and gold-palladium catalysts supported on acid-pretreated TiO2, Angew. Chem. Int. Ed. 48(2009) 8512-8515. [14] B.S. Jennifer, J.K. Edwards, N.N. Edwin, A.F. Carley, J.A. Herzing, G.J. Hutchings, Switching off hydrogen peroxide hydrogenation in the direct synthesis process, Science 23(2009) 1037-1041. [15] J.K. Edwards, J. Pritchard, L. Lu, M. Piccinini, G. Shaw, A.F. Carley, D.J. Morgan, C.J. Kiely, G.J. Hutchings, The direct synthesis of hydrogen peroxide using platinumpromoted gold-palladium catalysts, Angew. Chem. Int. Ed. 53(2014) 2381-2384. [16] S.J. Freakley, J.H. Harrhy, L. Lu, D.A. Crole, D.J. Morgan, J.K. Edwards, A.F. Carley, A.Y. Borisevich, G.J. Hutchings, Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity, Science 351(2016) 965-968. [17] L.K. Ouyang, P.F. Tian, G.J. Da, X.C. Xu, C. Ao, T.Y. Chen, Y.F. Han, The origin of active sites for direct synthesis of H2O2 on Pd/TiO2 catalysts:Interfaces of Pd and PdO domains, J. Catal. 321(2015) 70-80. [18] V.R. Choudhary, C. Samanta, T.V. Choudhary, Direct oxidation of H2 to H2O2 over Pdbased catalysts:Influence of oxidation state, support and metal additives, Appl. Catal. A Gen. 308(2006) 128-133. [19] V.R. Choudhary, P. Jana, Direct oxidation of H2 to H2O2 over PdO/Al2O3 catalysts in aqueous acidic medium:Influence on H2O2 formation of Pd loading, calcination temperature and reduction of catalyst and presence of halide anions, Catal. Commun. 9(2008) 2371-2375. [20] V.R. Choudhary, C. Samanta, T.V. Choudhary, Influence of nature/concentration of halide promoters and oxidation state on the direct oxidation of H2 to H2O2 over Pd/ZrO2 catalysts in aqueous acidic medium, Catal. Commun. 8(2007) 1310-1316. [21] J. Lunsford, The direct formation of H2O2 from H2 and O2 over palladium catalysts, J. Catal. 216(2003) 455-460. [22] S. Chinta, A mechanistic study of H2O2 and H2O formation from H2 and BO2 catalyzed by palladium in an aqueous medium, J. Catal. 225(2004) 249-255. [23] L. Fu, K.T. Chuang, R. Fiedorow, Selective oxidation of hydrogen to hydrogen peroxide, Stud. Surf. Sci. Catal. 72(1992) 33-41. [24] B.Z. Hu, W.P. Deng, R.S. Li, Q.H. Zhang, Y. Wang, F. Delplanque-Janssens, D. Paul, F. Desmedt, P. Miquel, Carbon-supported palladium catalysts for the direct synthesis of hydrogen peroxide from hydrogen and oxygen, J. Catal. 319(2014) 15-26. [25] J.K. Edwards, A. Thomas, B.E. Solsona, P. Landon, A.F. Carley, G.J. Hutchings, Comparison of supports for the direct synthesis of hydrogen peroxide from H2 and O2 using au-Pd catalysts, Catal. Today 122(2007) 397-402. [26] L.K. Ouyang, G.J. Da, P.F. Tian, T.Y. Chen, G.D. Liang, J. Xu, Y.F. Han, Insight into active sites of Pd-Au/TiO2 catalysts in hydrogen peroxide synthesis directly from H2 and O2, J. Catal. 311(2014) 129-136. [27] S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions:Group 8 noble metals supported on titanium dioxide, J. Am. Chem. Soc. 100(1978) 170-175. [28] Q.S. Yang, Y.J. Liao, L.L. Mao, Kinetics of photocatalytic degradation of gaseous organic compounds on modified TiO2/AC composite photocatalyst, Chin. J. Chem. Eng. 20(3) (2012) 572-576. [29] M.J. Sampaio, L.M. Pastrana-Martinez, A.M. Silva, J.G. Buijnsters, C. Han, C.G. Silva, A.C. Carabineiro, D.D. Dionysiou, J.L. Faria, Nanodiamond-TiO2 composites for photocatalytic degradation of microcystin-LA in aqueous solutions under simulated solar light, RSC Adv. 5(2015) 58363-58370. [30] A.H. Castro, F. Guinea, M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(2009) 109-162. [31] Y. Nishina, J. Miyata, R. Kawai, K. Gotoh, Recyclable Pd-graphene catalyst:Mechanistic insights into heterogeneous and homogeneous catalysis, RSC Adv. 2(2012) 9380-9382. [32] L.M. Pastrana-Martinez, A.T. Silva, N.N.C. Fonseca, J.R. Vaz, J.L. Figueiredo, J.L. Faria, Photocatalytic reduction of CO2 with water into methanol and ethanol using graphene derivative-TiO2 composites:Effect of pH and copper(I) oxide, Top. Catal. 59(2016) 1279-1291. [33] G.D. Jiang, Q. Chang, F.F. Yang, X.Y. Hu, H.Q. Tang, Sono-assisted preparation of magnetic ferroferric oxide/graphene oxide nanoparticles and application on dye removal, Chin. J. Chem. Eng. 23(2015) 510-515. [34] W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide, J. Am. Chem. Soc. 80(1958) 1939. [35] Y.X. Zhang, H.P. Li, X.L. Cui, Y.H. Lin, Graphene/TiO2 nanocomposites:synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting, J. Mater. Chem. A 20(2010) 2801-2806. [36] H. Zhang, X.J. Lv, Y.M. Li, Y. Wang, J.H. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano 4(1) (2010) 380-386. [37] Y.H. Zhang, Z.R. Tang, X.Z. Fu, Y. Xu, TiO2 graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant is TiO2 graphene truly different from other TiO2 carbon composite materials, ACS Nano 4(12) (2010) 7303-7314. [38] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, in:G.E. Muilenberg (Ed.) Handbook of X-ray Photoelectron Spectroscopy, 110, Perkin-Elmer, Minnesota, 1979. [39] D.D. Zhou, L. Ding, H. Cui, H. An, J.P. Zhao, Q. Li, Fabrication of Pd/TiO2-multiwall carbon nanotubes catalyst and investigation of its electrocatalytic activity for formic acid oxidation, J. Power Sources 222(2013) 510-517. [40] R. Tu, S.Y. Chen, W. Cao, S.Y. Zhang, L.C. Li, T. Ji, J. Li, X.H. Lu, The effect of H2O2 desorption on achieving improved selectivity for direct synthesis of H2O2 over TiO2(B)/anatase supported Pd catalyst, Catal. Commun. 89(2017) 69-72. |
[1] | Xia Miao, Xiaofan Pang, Shiyu Li, Haoguang Wei, Jianhao Yin, Xiangming Kong. Mechanical strength and the degradation mechanism of metakaolin based geopolymer mixed with ordinary Portland cement and cured at high temperature and high relative humidity [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 118-130. |
[2] | Qunfeng Zhang, Bingcheng Li, Yuan Zhou, Deshuo Zhang, Chunshan Lu, Feng Feng, Jinghui Lv, Qingtao Wang, Xiaonian Li. Regulation of the selective hydrogenation performance of sulfur-doped carbon-supported palladium on chloronitrobenzene [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 69-75. |
[3] | Yutong Jiang, Yifeng Chen, Fuliu Yang, Jixue Fan, Jun Li, Zhuhong Yang, Xiaoyan Ji. Efficient SO2 removal using aqueous ionic liquid at low partial pressure [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 355-363. |
[4] | Shanshan Mao, Tao Shen, Qing Zhao, Tong Han, Fan Ding, Xin Jin, Manglai Gao. Selective capture of silver ions from aqueous solution by series of azole derivatives-functionalized silica nanosheets [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 319-328. |
[5] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
[6] | Lianlian Zhao, Fufu Di, Xiaonan Wang, Sumbal Farid, Suzhen Ren. Constructing a hollow core-shell structure of RuO2 wrapped by hierarchical porous carbon shell with Ru NPs loading for supercapacitor [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 93-100. |
[7] | Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136. |
[8] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10. |
[9] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 316-322. |
[10] | Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 142-154. |
[11] | Fengfeng Gao, Jinhua Luo, Xuefeng Zhang, Xiaogang Hao, Guoqing Guan, Zhong Liu, Jun Li, Qinglong Luo. Electrodeposited iodide ions imprinted polypyrrole@bismuth oxyiodide film for an electrochemically switched renewable extractor towards iodide ions [J]. Chinese Journal of Chemical Engineering, 2022, 49(9): 161-169. |
[12] | Jun Li, Liqiang Zhang, Xiao Zhu, Mengze Zhang, Tai Feng, Xiqiang Zhao, Tao Wang, Zhanlong Song, Chunyuan Ma. Systematic investigation of SO2 adsorption and desorption by porous powdered activated coke: Interaction between adsorption temperature and desorption energy consumption [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 140-148. |
[13] | Yingmeng Zhang, Luting Liu, Qingwei Deng, Wanlin Wu, Yongliang Li, Xiangzhong Ren, Peixin Zhang, Lingna Sun. Hybrid CuO-Co3O4 nanosphere/RGO sandwiched composites as anode materials for lithium-ion batteries [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 185-192. |
[14] | Zhibin Ma, Xueli Zhang, Guangjun Lu, Yanxia Guo, Huiping Song, Fangqin Cheng. Hydrothermal synthesis of zeolitic material from circulating fluidized bed combustion fly ash for the highly efficient removal of lead from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 193-205. |
[15] | Wenjian Zhu, Xuhua Shen, Rui Ou, Manoj Murugesan, Aihua Yuan, Jianfeng Liu, Xiaocai Hu, Zhen Yang, Ming Shen, Fu Yang. Superhigh selective capture of volatile organic compounds exploiting cigarette butts-derived engineering carbonaceous adsorbent [J]. Chinese Journal of Chemical Engineering, 2022, 46(6): 194-206. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 69
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1286
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||