Chinese Journal of Chemical Engineering ›› 2023, Vol. 55 ›› Issue (3): 123-136.DOI: 10.1016/j.cjche.2022.04.028
Previous Articles Next Articles
Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo
Received:
2022-02-08
Revised:
2022-04-04
Online:
2023-06-03
Published:
2023-03-28
Contact:
Tutuk Djoko Kusworo,E-mail:tdkusworo@che.undip.ac.id
Supported by:
Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo
通讯作者:
Tutuk Djoko Kusworo,E-mail:tdkusworo@che.undip.ac.id
基金资助:
Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 123-136.
Tutuk Djoko Kusworo, Monica Yulfarida, Andri Cahyo Kumoro, Dani Puji Utomo. Purification of bioethanol fermentation broth using hydrophilic PVA crosslinked PVDF-GO/TiO2 membrane[J]. 中国化学工程学报, 2023, 55(3): 123-136.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2022.04.028
[1] S. Barak, R.K. Rahman, S. Neupane, E. Ninnemann, F. Arafin, A. Laich,A.C Terracciano, S.S. Vasu. Measuring the effectiveness of high-performance Co-Optima biofuels on suppressing soot formation at high temperature. Proc. Natl. Acad. Sci. U. S. A. 117(7) (2020) 3451–3460. [2] A. Bušić, N. Mardetko, S. Kundas, G. Morzak, H. Belskaya, M.I. Šantek MI, D. Komes, S. Novak, B. Santek. Bioethanol production from renewable raw materials and its separation and purification: A review. Food Technol Biotechnol. 56(3) (2018) 289–311. [3] M. Vohra, J. Manwar, R. Manmode, S. Padgilwar, S. Patil, Bioethanol production: Feedstock and current technologies, J. Environ. Chem. Eng. 2 (1) (2014) 573–584. [4] P.G. del Río, P. Gullón, F.R. Rebelo, A. Romaní, G. Garrote, B. Gullón, A whole-slurry fermentation approach to high-solid loading for bioethanol production from corn stover, Agronomy 10 (11) (2020) 1790. [5] N. Manmai, Y. Unpaprom, V.K. Ponnusamy, R. Ramaraj, Bioethanol production from the comparison between optimization of sorghum stalk and sugarcane leaf for sugar production by chemical pretreatment and enzymatic degradation, Fuel 278 (2020) 118262. [6] T. Suresh, N. Sivarajasekar, K. Balasubramani,T. Ahamad, M. Alam, M. Naushad . Process intensification and comparison of bioethanol production from food industry waste (potatoes) by ultrasonic assisted acid hydrolysis and enzymatic hydrolysis: Statistical modelling and optimization. Biomass and Bioenergy. 142 (2020) 105752. [7] H. Nouri, M. Ahi, M. Azin, S.L. Mousavi Gargari, Detoxification vs. adaptation to inhibitory substances in the production of bioethanol from sugarcane bagasse hydrolysate: A case study, Biomass Bioenergy 139 (2020) 105629. [8] S.K. Thangavelu, A.S. Ahmed, F.N. Ani, Review on bioethanol as alternative fuel for spark ignition engines, Renew. Sustain. Energy Rev. 56 (2016) 820–835. [9] S.Q. Fan, Z.Y. Xiao, X.Y. Tang, C.Y. Chen, Y. Zhang, Q. Deng, P.N. Yao, W.J. Li, Inhibition effect of secondary metabolites accumulated in a pervaporation membrane bioreactor on ethanol fermentation of Saccharomyces cerevisiae, Bioresour. Technol. 162 (2014) 8–13. [10] A. Khalid, M. Aslam, M.A. Qyyum, A. Faisal, A.L. Khan, F. Ahmed, M. Lee, J. Kim, N. Jang, I.S. Chang, A.A. Bazmi, M. Yasin, Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects, Renew. Sustain. Energy Rev. 105 (2019) 427–443. [11] S.Q. Fan, J.Y. Liu, X.Y. Tang, W.G. Wang, Z.Y. Xiao, B.Y. Qiu, Y.Y. Wang, S.Z. Jian, Y.M. Qin, Y.N. Wang, Process operation performance of PDMS membrane pervaporation coupled with fermentation for efficient bioethanol production, Chin. J. Chem. Eng. 27 (6) (2019) 1339–1347. [12] A.F. Faria, C.H. Liu, M. Xie, F. Perreault, L.D. Nghiem, J. Ma, M. Elimelech, Thin-film composite forward osmosis membranes functionalized with graphene oxide-silver nanocomposites for biofouling control, J. Membr. Sci. 525 (2017) 146–156. [13] L.S. Oliveira, A.S. Franca. An Overview of the Potential Uses for Coffee Husks. In: Coffee in Health and Disease Prevention. Elsevier; 2015. p. 283–291. [14] T.K. Mai, S. Rodtong, Y. Baimark, J. Rarey, A. Boontawan, Membrane-based purification of optically pure D-lactic acid from fermentation broth to poly(D-lactide) polymer, J. Membr. Sci. 551 (2018) 180–190. [15] R.H. Bello, O. Souza, N. Sellin, S.H.W. Medeiros, Marangoni C. Effect of the microfiltration phase on pervaporation of ethanol produced from banana residues. Comput Aided Chem Eng. 31 (2012) 820–824. [16] J.X. Zhang, L.N. Zhu, S.Y. Zhao, D.H. Wang, Z.G. Guo, A robust and repairable copper-based superhydrophobic microfiltration membrane for high-efficiency water-in-oil emulsion separation, Sep. Purif. Technol. 256 (2021) 117751. [17] M.G. Buonomenna, J. Bae, Membrane processes and renewable energies, Renew. Sustain. Energy Rev. 43 (2015) 1343–1398. [18] Y. Wibisono, E.R. Cornelissen, A.J.B. Kemperman, W.G.J. van der Meer, K. Nijmeijer, Two-phase flow in membrane processes: A technology with a future, J. Membr. Sci. 453 (2014) 566–602. [19] S.H. Mohd Azhar, R. Abdulla, S.A. Jambo, H. Marbawi, J.A. Gansau, A.A. Mohd Faik, K.F. Rodrigues, Yeasts in sustainable bioethanol production: A review, Biochem. Biophys. Rep. 10 (2017) 52–61. [20] S.M. Kumar, S. Roy, Filtration characteristics in dead-end microfiltration of living Saccharomyces cerevisiae cells by alumina membranes, Desalination 229 (1–3) (2008) 348–361. [21] A. Dubey, J. Jain, J. Singh. Potential of Membrane Bioreactors ’ in Ethanol and Biogas Production a Review. International Journal of Chemistry and Chemical Engineering 3(3) (2013) 131–138. [22] N.I. Mat Nawi, H.M. Chean, N. Shamsuddin, M.R. Bilad, T. Narkkun, K. Faungnawaki, A.L. Khan. Development of hydrophilic PVDF membrane using vapour induced phase separation method for produced water treatment. Membranes (Basel). 10(6) (2020) 121. [23] X. Shen, Y. Zhao, X. Feng, S. Bi, W. Ding, L. Chen. Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer. Biofouling. 29(3) (2013) 331–343. [24] S. Liang, G.G. Qi, K. Xiao, J.Y. Sun, E.P. Giannelis, X. Huang, M. Elimelech, Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors, J. Membr. Sci. 463 (2014) 94–101. [25] J.Y. Jung, K. Kim, S.A. Choi, H. Shin, D. Kim, S.C. Bai, Y.K. Chang, J, Han . Dynamic filtration with a perforated disk for dewatering of Tetraselmis suecica. Environ Technol. 38(24) (2017) 3102–3108. [26] W.Z. Zhang, B.Z. Dong, Effects of physical and chemical aspects on membrane fouling and cleaning using interfacial free energy analysis in forward osmosis, Environ. Sci. Pollut. Res. Int. 25 (22) (2018) 21555–21567. [27] L.L. Yan, X.B. Yang, Y.Y. Zhao, Y.D. Wu, R. Motlhaletsi Moutloali, B.B. Mamba, P. Sorokin, L. Shao, Bio-inspired mineral-hydrogel hybrid coating on hydrophobic PVDF membrane boosting oil/water emulsion separation, Sep. Purif. Technol. 285 (2022) 120383. [28] Z.Y. Zhu, J.L. Jiang, X.D. Wang, X.N. Huo, Y.W. Xu, Q.Q. Li, L. Wang, Improving the hydrophilic and antifouling properties of polyvinylidene fluoride membrane by incorporation of novel nanohybrid GO@SiO2 particles, Chem. Eng. J. 314 (2017) 266–276. [29] A. Ejraei, M.A. Aroon, A. Ziarati Saravani, Wastewater treatment using a hybrid system combining adsorption, photocatalytic degradation and membrane filtration processes, J. Water Process. Eng. 28 (2019) 45–53. [30] A. Modi, J. Bellare, Efficient removal of dyes from water by high flux and superior antifouling polyethersulfone hollow fiber membranes modified with ZnO/cGO nanohybrid, J. Water Process. Eng. 29 (2019) 100783. [31] W. Zhan, Z.J. Xu, X.N. Yang, Molecular interlayer intercalation of ethanol-water mixture towards GO laminated membranes, Sep. Purif. Technol. 233 (2020) 116029. [32] L.G. Wu, X.Y. Zhang, T. Wang, C.H. Du, C.H. Yang, Enhanced performance of polyvinylidene fluoride ultrafiltration membranes by incorporating TiO2/graphene oxide, Chem. Eng. Res. Des. 141 (2019) 492–501. [33] M. Ahsani, H. Hazrati, M. Javadi, M. Ulbricht, R. Yegani, Preparation of antibiofouling nanocomposite PVDF/Ag-SiO2 membrane and long-term performance evaluation in the MBR system fed by real pharmaceutical wastewater, Sep. Purif. Technol. 249 (2020) 116938. [34] C.P. Athanasekou, S. Morales-Torres, V. Likodimos, G.E. Romanos, L.M. Pastrana-Martinez, P. Falaras, et al. Prototype composite membranes of partially reduced graphene oxide/TiO2 for photocatalytic ultrafiltration water treatment under visible light. Appl. Catal. B Environ. 158–159 (2014) 361–372. [35] E. Kusiak-Nejman, A.W. Morawski, TiO2/graphene-based nanocomposites for water treatment: A brief overview of charge carrier transfer, antimicrobial and photocatalytic performance, Appl. Catal. B Environ. 253 (2019) 179–186. [36] R.N. Zhang, Y.N. Liu, M.R. He, Y.L. Su, X.T. Zhao, M. Elimelech, Z.Y. Jiang, Antifouling membranes for sustainable water purification: Strategies and mechanisms, Chem Soc Rev 45 (21) (2016) 5888–5924. [37] Z.W. Xu, T.F. Wu, J. Shi, K.Y. Teng, W. Wang, M.J. Ma, J. Li, X.M. Qian, C.Y. Li, J.T. Fan, Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment, J. Membr. Sci. 520 (2016) 281–293. [38] M. López-Manchado, B. Herrero, M. Arroyo, Organoclay-natural rubber nanocomposites synthesized by mechanical and solution mixing methods, Polym. Int. 53 (11) (2004) 1766–1772. [39] Y. Zhang, J.R. Cho,S. Park. Interlayer polymerization in amine-terminated macromolecular chain-grafted expanded graphite for fabricating highly thermal conductive and physically strong thermoset composites for thermal management applications. Compos. Part A Appl. Sci. Manuf.109 (2018) 498–506. . [40] D. Rana, K. Bag, S.N. Bhattacharyya, B.M. Mandal, Miscibility of poly(styrene-co-butyl acrylate) with poly(ethyl methacrylate): Existence of both UCST and LCST, J. Polym. Sci. B Polym. Phys. 38 (3) (2000) 369–375. [41] Y.L. Luo, X.L. Chen, H.B. Liu, H. Zhang, M. Song, J. Liu, Z.Y. Luo, Precisely tailoring the thermodynamic compatibility between single-walled carbon nanotubes and styrene butadiene rubber via fully atomistic molecular dynamics simulation and theoretical approach, Comput. Mater. Sci. 186 (2021) 109995. [42] K.W. Stöckelhuber, S. Wießner, A. Das, G. Heinrich, Filler flocculation in polymers–a simplified model derived from thermodynamics and game theory, Soft Matter 13 (20) (2017) 3701–3709. [43] B. Faure, G. Salazar-Alvarez, A. Ahniyaz, I. Villaluenga, G. Berriozabal, Y.R. de Miguel, L. Bergström, Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens, Sci. Technol. Adv. Mater. 14 (2) (2013) 023001. [44] M. Mahmoudian, M.G. Kochameshki, H. Mahdavi, H. Vahabi, M. Enayati. Investigation of structure-performance properties of a special type of polysulfone blended membranes. Polym. Adv. Technol. 29(10) (2018) 2690–2700. [45] M. Hidayah, T.D. Kusworo, H. Susanto. Improving the performance of polysulfone-nano ZnO membranes for water treatment in oil refinery with modified UV irradiation and polyvinyl alcohol. Period. Polytech. Chem. Eng. 27 (2021) 1–11. http://dx.doi.org/110.3311/PPch.17029 [46] X.L. Gao, H.Z. Wang, J. Wang, X. Huang, C.J. Gao, Surface-modified PSf UF membrane by UV-assisted graft polymerization of capsaicin derivative moiety for fouling and bacterial resistance, J. Membr. Sci. 445 (2013) 146–155. [47] S.S. Shen, Y. Hao, Y.Y. Zhang, G.W. Zhang, X.J. Zhou, R.B. Bai, Enhancing the antifouling properties of poly(vinylidene fluoride) (PVDF) membrane through a novel blending and surface-grafting modification approach, ACS Omega 3 (12) (2018) 17403–17415. [48] P. Fabbri, M. Messori. Surface Modification of Polymers. In: Modification of Polymer Properties. Elsevier; 2017. p. 109–30. [49] D.M. Correia, J. Nunes-Pereira, D. Alikin, A.L. Kholkin, S.A.C. Carabineiro, L. Rebouta, M.S. Rodrigues, F. Vaz, C.M. Costa, S. Lanceros-Méndez, Surface wettability modification of poly(vinylidene fluoride) and copolymer films and membranes by plasma treatment, Polymer 169 (2019) 138–147. [50] D. Rana, B. Scheier, R.M. Narbaitz, T. Matsuura, S. Tabe, S.Y. Jasim, K.C. Khulbe, Comparison of cellulose acetate (CA) membrane and novel CA membranes containing surface modifying macromolecules to remove pharmaceutical and personal care product micropollutants from drinking water, J. Membr. Sci. 409-410 (2012) 346–354. [51] T.D. Kusworo, N. Aryanti, E. Nurmalasari, D.P. Utomo, PVA coated nano hybrid PES-ZnO membrane for natural rubber wastewater treatment, AIP Conf. Proc. 2197 (1) (2020) 050013. [52] J. Garcia-Ivars, M.I. Iborra-Clar, M.I. Alcaina-Miranda, J.A. Mendoza-Roca, L. Pastor-Alcañiz, Surface photomodification of flat-sheet PES membranes with improved antifouling properties by varying UV irradiation time and additive solution pH, Chem. Eng. J. 283 (2016) 231–242. [53] S. Sakarkar, S. Muthukumaran, V. Jegatheesan, Evaluation of polyvinyl alcohol (PVA) loading in the PVA/titanium dioxide (TiO2) thin film coating on polyvinylidene fluoride (PVDF) membrane for the removal of textile dyes, Chemosphere 257 (2020) 127144. [54] X.P. Yu, X.Y. Mi, Z.H. He, M.J. Meng, H.J. Li, Y.S. Yan, Fouling resistant CA/PVA/TiO 2 imprinted membranes for selective recognition and separation salicylic acid from waste water, Front. Chem. 5 (2017) 2. [55] M. Palencia, Surface free energy of solids by contact angle measurements, J. Sci. Technol. Appl. 2 (2017) 84–93. [56] A. Kozbial, Z.T. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D'Urso, H.T. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements, Langmuir 30 (28) (2014) 8598–8606. [57] Y.J. Huang, Y.S. Ye, Y.C. Yen, L.D. Tsai, B.J. Hwang, F.C. Chang, Synthesis and characterization of new sulfonated polytriazole proton exchange membrane by click reaction for direct methanol fuel cells (DMFCs), Int. J. Hydrog. Energy 36 (23) (2011) 15333–15343. [58] B.M. Ganesh, A.M. Isloor, A.F. Ismail, Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane, Desalination 313 (2013) 199–207. [59] T.D. Kusworo, F. Dalanta, N. Aryanti, N.H. Othman, Intensifying separation and antifouling performance of PSf membrane incorporated by GO and ZnO nanoparticles for petroleum refinery wastewater treatment, J. Water Process. Eng. 41 (2021) 102030. [60] H. Bai, X. Wang, Y. Zhou, L. Zhang. Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog. Nat. Sci. Mater. Int. 22(3) (2012) 250–257. [61] M.S. Jayalakshmy, J. Philip, Enhancement in pyroelectric detection sensitivity for flexible LiNbO3/PVDF nanocomposite films by inclusion content control, J. Polym. Res. 22 (3) (2015) 1–11. [62] J. Chae, T. Lim, H. Cheng, W. Jung, Modification of the surface morphology and properties of graphene oxide and multi-walled carbon nanotube-based polyvinylidene fluoride membranes according to changes in non-solvent temperature, Nanomaterials 11 (9) (2021) 2269. [63] R.J. Li, J.Y. Li, L.H. Rao, H.J. Lin, L.G. Shen, Y.C. Xu, J.R. Chen, B.Q. Liao, Inkjet printing of dopamine followed by UV light irradiation to modify mussel-inspired PVDF membrane for efficient oil-water separation, J. Membr. Sci. 619 (2021) 118790. [64] G.H. Teoh, P.C. Tan, A.L. Ahmad, S.C. Low. Analysis of organic-inorganic compatibility to synthesis defect free composite membrane: A review. J. Membr. Sci. Res. 7(1) (2021) 29–37. [65] Charles M. Hansen, Hansen solubility parameters: A user's handbook, CRC Press, Boca Raton, 2000. [66] A. Mahboubi, C. Uwineza, W. Doyen, H. de Wever, M.J. Taherzadeh, Intensification of lignocellulosic bioethanol production process using continuous double-staged immersed membrane bioreactors, Bioresour. Technol. 296 (2020) 122314. [67] L. Chen, Y. Tian, C.Q. Cao, J. Zhang, Z.N. Li, Interaction energy evaluation of soluble microbial products (SMP) on different membrane surfaces: Role of the reconstructed membrane topology, Water Res. 46 (8) (2012) 2693–2704. [68] C. Abels, F. Carstensen, M. Wessling. Membrane processes in biorefinery applications. J. Memb. Sci. 444 (2013) 285–317. [69] C. Regm, S. Lotfi, J.C. Espíndola, K. Fischer, A. Schulze, A.I. SchäferI. Comparison of photocatalytic membrane reactor types for the degradation of an organic molecule by TiO2-Coated PES membrane. catalysts. 10(7) (2020) 725. [70] A. Cali, Y. Yağızatlı, A. Sahin, İ. Ar, Highly durable phosphonated graphene oxide doped polyvinylidene fluoride (PVDF) composite membranes, Int. J. Hydrog. Energy 45 (60) (2020) 35171–35179. [71] A. Ouakouak, K. Rihani, L. Youcef, N. Hamdi, S. Guergazi, Adsorption characteristics of Cu ({II}) onto{CaCl}$\less$sub$\greater$2$\less$/sub$\greater$ pretreated Algerian bentonite, Mater. Res. Express 7 (2) (2020) 025045. [72] T.D. Kusworo, H. Susanto, N. Aryanti, N. Rokhati, I.N. Widiasa, H. Al-Aziz, D.P. Utomo, D. Masithoh, A.C. Kumoro, Preparation and characterization of photocatalytic PSf-TiO2/GO nanohybrid membrane for the degradation of organic contaminants in natural rubber wastewater, J. Environ. Chem. Eng. 9 (2) (2021) 105066. [73] D. Kregiel, J. Berlowska, B. Szubzda, Novel permittivity test for determination of yeast surface charge and flocculation abilities, J Ind Microbiol Biotechnol 39 (12) (2012) 1881–1886. [74] T.D. Kusworo, A.C. Kumoro, D.P. Utomo, Phenol and ammonia removal in petroleum refinery wastewater using a poly(vinyl) alcohol coated polysulfone nanohybrid membrane, J. Water Process. Eng. 39 (2021) 101718. [75] H. Alexandre, S. Blanchet, C. Charpentier, Identification of a 49-kDa hydrophobic cell wall mannoprotein present in velum yeast which may be implicated in velum formation, FEMS Microbiol Lett 185 (2) (2000) 147–150. [76] X. Li, A. Sotto, J.S. Li, B. van der Bruggen, Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles, J. Membr. Sci. 524 (2017) 502–528. [77] J. Garcia-Ivars, M.I. Alcaina-Miranda, M.I. Iborra-Clar, J.A. Mendoza-Roca, L. Pastor-Alcañiz, Enhancement in hydrophilicity of different polymer phase-inversion ultrafiltration membranes by introducing PEG/Al2O3 nanoparticles, Sep. Purif. Technol. 128 (2014) 45–57. [78] J. María Arsuaga, A. Sotto, G. del Rosario, A. Martínez, S. Molina, S.B. Teli, J. de Abajo, Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes, J. Membr. Sci. 428 (2013) 131–141. [79] F. Liu, M.R.M. Abed, K. Li, Preparation and characterization of poly(vinylidene fluoride) (PVDF) based ultrafiltration membranes using nano γ-Al2O3, J. Membr. Sci. 366 (1–2) (2011) 97–103. [80] T.R. Neu, J.R. Lawrence, Extracellular polymeric substances in microbial biofilms. Microbial Glycobiology. Amsterdam: Elsevier, 2010: 733–758. |
[1] | Taoyan Mao, Runhui Xiao, Peng Liu, Jiale Chen, Junqiang Luo, Su Luo, Fengwei Xie, Cheng Zheng. Facile fabrication of durable superhydrophobic fabrics by silicon polyurethane membrane for oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 73-83. |
[2] | Zhengchi Yin, Xiaoke Wu, Yanwei Yang, Huayu Zhang, Wangtao Li, Ruimin Zhu, Qiancheng Zheng, Zhengbao Wang. Fabrication of ZIF-8 membranes on dual-layer ZnO-PES/PES organic hollow fibers by in-situ crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 101-110. |
[3] | Chunxin Fan, Zini Guo, Jianhong Luo. Study on an improved rotating microchannel separator in the intensification for demulsification and separation process [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 181-191. |
[4] | Zhongqi Ren, Jie Wang, Hewei Zhang, Fan Zhang, Shichao Tian, Zhiyong Zhou. Adsorption of rubidium ion from aqueous solution by surface ion imprinted materials [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 1-10. |
[5] | Suhang Jiang, Lijuan Tan, Yujia Tong, Lijian Shi, Weixing Li. A heterogeneous double chamber electro-Fenton with high production of H2O2 using La–CeO2 modified graphite felt as cathode [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 98-105. |
[6] | Ronghua Zhang, Jingxuan Yang, Shaoxing Han, Xiaogang Hao, Guoqing Guan. Improving advantages and reducing risks in increasing cyclone height via an apex cone to grasp vortex end [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 136-143. |
[7] | Xi Zhang, Xiaodong Wang, Wei Huang. Separation of a C3H6/C2H4 mixture using Pebax® 2533/PEG600 blend membranes [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 192-198. |
[8] | Yinglin Mai, Xiaoling Xian, Lei Hu, Xiaodong Zhang, Xiaojie Zheng, Shunhui Tao, Xiaoqing Lin. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 248-256. |
[9] | Miaomiao Zhao, Degang Ma, Yu Ye. Adsorption, separation and recovery properties of blocky zeolite-biochar composites for remediation of cadmium contaminated soil [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 272-279. |
[10] | Xiaodong Yang, Na Yang, Ziqiang Gong, Feifei Peng, Bin Jiang, Yongli Sun, Luhong Zhang. The superhydrophobic sponge decorated with Ni-Co double layered oxides with thiol modification for continuous oil/water separation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 296-305. |
[11] | Guolang Zhou, Xiaowei Li, Linlin Chen, Guiling Luo, Jun Gu, Jie Zhu, Jiangtao Yu, Jingzhou Yin, Yanhong Chao, Wenshuai Zhu. Construction of porous disc-like lithium manganate for rapid and selective electrochemical lithium extraction from brine [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 316-322. |
[12] | Fei Wang, Zhiyuan Bi, Lifeng Ding, Qingyuan Yang. Large-scale computational screening of metal–organic frameworks for D2/H2 separation [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 323-330. |
[13] | Eid H. Alosaimi, Ibrahim Hotan Alsohaimi, Hassan M.A. Hassan, Qiao Chen, Saad Melhi, Ayman Abdelaziz Younes. Towards superior permeability and antifouling performance of sulfonated polyethersulfone ultrafiltration membranes modified with sulfopropyl methacrylate functionalized SBA-15 [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 89-100. |
[14] | Mi Feng, Bin He, Xinyan Chen, Junli Xu, Xingmei Lu, Cai Jia, Jian Sun. Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 133-141. |
[15] | Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 142-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||