[1] M.E. Casco, M. Martinez-Escandell, K. Kaneko, J. Silvestre-Albero, F. Rodriguez-Reinoso, Very high methane uptake on activated carbons prepared from mesophase pitch:a compromise between microporosity and bulk density, Carbon 93(2015) 11-21.[2] M.E. Casco, M. Martinez-Escandell, E. Gadea-Ramos, K. Kaneko, J. Silvestre-Albero, F. Rodriguez-Reinoso, High-pressure methane storage in porous materials:are carbon materials in the pole position? Chem. Mater. 27(3) (2015) 959-964.[3] D. Cao, J. Wu, Modeling the selectivity of activated carbons for efficient separation of hydrogen and carbon dioxide, Carbon 43(7) (2005) 1364-1370.[4] G. Han, X. Wang, Investigation on characteristics of liquid self-diffusion in slit nanopores using simple quasicrystal model of liquid, Chin. J. Chem. Eng. 23(6) (2015) 897-904.[5] M. Thommes, K. Cychosz, Physical adsorption characterization of nanoporous materials:progress and challenges, Adsorption 20(2) (2014) 233-250.[6] Y. Tang, J. Wu, Modeling inhomogeneous van der Waals fluids using an analytical direct correlation function, Phys. Rev. E 70(1) (2004) 11201.[7] Y. Yu, A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces, J. Chem. Phys. 131(2) (2009) 24704.[8] Y. Liu, H. Liu, Y. Hu, J. Jiang, Density functional theory for adsorption of gas mixtures in metal-organic frameworks, J. Phys. Chem. B 114(8) (2010) 2820-2827.[9] M. Zeng, Y. Tang, J. Mi, C. Zhong, Improved direct correlation function for density functional theory analysis of pore size distributions, J. Phys. Chem. C 113(40) (2009) 17428-17436.[10] L.A. Mitchell, B.J. Schindler, G. Das, M.C. dos Ramos, C. McCabe, P.T. Cummings, M.D. LeVan, Prediction of n-alkane adsorption on activated carbon using the SAFT-FMTDFT approach, J. Phys. Chem. C 119(3) (2015) 1457-1463.[11] G. Shen, X. Lu, X. Ji, Modeling of molecular gas adsorption isotherms on porous materials with hybrid PC-SAFT-DFT, Fluid Phase Equilib. 382(2014) 116-126.[12] Z. Li, Z. Jin, A. Firoozabadi, Phase behavior and adsorption of pure substances and mixtures and characterization in nanopore structures by density functional theory, SPE J. 19(6) (2014) 1096-1109.[13] S. Patchkovskii, T. Heine, Quantized liquid density-functional theory for hydrogen adsorption in nanoporous materials, Phys. Rev. E 80(3) (2009) 31603.[14] J. Jagiello, J.P. Olivier, 2D-NLDFT adsorption models for carbon slit-shaped pores with surface energetical heterogeneity and geometrical corrugation, Carbon 55(2013) 70-80.[15] J. Jagiello, J.P. Olivier, Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation, Adsorption 19(2) (2013) 777-783.[16] B. Peng, Y. Yu, A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials, Langmuir 24(21) (2008) 12431-12439.[17] B. Peng, Y. Yu, A density functional theory with a mean-field weight function:applications to surface tension, adsorption, and phase transition of a Lennard-Jones fluid in a slit-like pore, J. Phys. Chem. B 112(48) (2008) 15407-15416.[18] J. Landers, G.Y. Gor, A.V. Neimark, Density functional theory methods for characterization of porous materials, Colloids Surf. A Physicochem. Eng. Asp. 437(2013) 3-32.[19] G.Y. Gor, M. Thommes, K.A. Cychosz, A.V. Neimark, Quenched solid density functional theory method for characterization of mesoporous carbons by nitrogen adsorption, Carbon 50(4) (2012) 1583-1590.[20] M. Sweatman, N. Quirke, Characterization of porous materials by gas adsorption at ambient temperatures and high pressure, J. Phys. Chem. B 105(7) (2001) 1403-1411.[21] X. Shao, Z. Feng, R. Xue, C. Ma, W. Wang, X. Peng, D. Cao, Adsorption of CO2, CH4, CO2/N2 and CO2/CH4 in novel activated carbon beads:preparation, measurements and simulation, AIChE J. 57(11) (2011) 3042-3051.[22] T. Ihara, T. Furusato, S. Kameda, T. Kiyan, S. Katsuki, M. Hara, H. Akiyama, Initiation mechanism of a positive streamer in pressurized carbon dioxide up to liquid and supercritical phases with nanosecond pulsed voltages, J. Phys. D. Appl. Phys. 45(7) (2012) 75204.[23] J. Johnson, J. Zollweg, K.E. Gubbins, The Lennard-Jones equation of state revisited, Mol. Phys. 78(3) (1993) 591-618.[24] D.D. Do, Adsorption analysis:equilibria and kinetics, Imperial College Press, London, 1998.[25] C. Lastoskie, K.E. Gubbins, N. Quirke, Pore size heterogeneity and the carbon slit pore:a density functional theory model, Langmuir 9(10) (1993) 2693-2702.[26] K. Wang, D.D. Do, Characterizing the micropore size distribution of activated carbon using equilibrium data of many adsorbates at various temperatures, Langmuir 13(23) (1997) 6226-6233.[27] J. Jagiello, Stable numerical solution of the adsorption integral equation using splines, Langmuir 10(8) (1994) 2778-2785.[28] X. Shao, X. Zhang, W. Wang, Comparison of density functional theory and molecular simulation methods for pore size distribution of mesoporous materials, Acta Phys. -Chim. Sin. 19(6) (2003) 538-542.[29] J. Wu, Variational methods in molecular modeling, Springer, Singapore, 2017.[30] J. Wu, Density functional theory for chemical engineering:from capillarity to soft materials, 52(3) (2006) 1169-1193.[31] Y. Tian, J. Wu, Differential heat of adsorption and isosteres, Langmuir 33(4) (2017) 996-1003.[32] Y. Liu, Application of density functional theory in MOF material and DNA denaturation (Ph. D. Thesis) East China University of Science Technology, China, 2012.[33] Y. Yu, J. Wu, Structures of hard-sphere fluids from a modified fundamental-measure theory, J. Chem. Phys. 117(22) (2002) 10156-10164.[34] P.I. Ravikovitch, Characterization of nanoporous materials by gas adsorption and density-functional theory(Ph. D. Thesis) Yale University, United States, 1998.[35] N.F. Carnahan, K.E. Starling, Equation of state for nonattracting rigid spheres, J. Chem. Phys. 51(51) (1969) 635-636.[36] Y. Tang, Z. Tong, C.Y. Lu, Analytical equation of state based on the Ornstein-Zernike equation, Fluid Phase Equilib. 134(1-2) (1997) 21-42.[37] J. Fu, Y. Liu, Y. Tian, J. Wu, Density functional methods for fast screening of metal-organic frameworks for hydrogen storage, J. Phys. Chem. C 119(10) (2015) 5374-5385.[38] J. Fu, Y. Tian, J. Wu, Classical density functional theory for methane adsorption in metal-organic framework materials, AIChE J. 61(9) (2015) 3012-3021.[39] M.G. Martin, MCCCS towhee:a tool for Monte Carlo molecular simulation, Mol. Simul. 39(14-15) (2013) 1212-1222.[40] J. Pranata, S.G. Wierschke, W.L. Jorgensen, OPLS potential functions for nucleotide bases. Relative association constants of hydrogen-bonded base pairs in chloroform, J. Am. Chem. Soc. 113(8) (1991) 2810-2819.[41] L. Dalcin, R. Paz, M. Storti, J. D'Elia, MPI for python:performance improvements and MPI-2 extensions, J. Parallel Distrib. Comput. 68(5) (2008) 655-662.[42] C. Sitprasert, Z. Zhu, F. Wang, V. Rudolph, A multi-scale approach to the physical adsorption in slit pores, Chem. Eng. Sci. 66(22) (2011) 5447-5458.[43] G. Wang, Y. Tian, J. Jiang, J. Wu, Multimodels computation for adsorption capacity of activated carbon, Adsorpt. Sci. Technol. (2017), https://doi.org/10.1177/0263617417705472.[44] G. Davies, N. Seaton, V. Vassiliadis, Calculation of pore size distributions of activated carbons from adsorption isotherms, Langmuir 15(23) (1999) 8235-8245.[45] S.H. Madani, L.H. Diaz, M.J. Biggs, P. Pendleton, Uncertainty in pore size distribution derived from adsorption isotherms:Ⅱ. Adsorption integral approach, Microporous Mesoporous Mater. 214(2015) 217-223.[46] S.H. Madani, C. Hu, A. Silvestre-Albero, M.J. Biggs, F. Rodriguez-Reinoso, P. Pendleton, Pore size distributions derived from adsorption isotherms, immersion calorimetry, and isosteric heats:a comparative study, Carbon 96(2016) 1106-1113. |