[1] V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R.G. Bell, C.R.A. Catlow, Advances in theory and their application within the field of zeolite chemistry, Chem. Soc. Rev. 44(2015) 7044-7111.[2] V. Van Speybroeck, K. De Wispelaere, J. Van der Mynsbrugge, M. Vandichel, K. Hemelsoet, M. Waroquier, First principle chemical kinetics in zeolites:The methanol-to-olefin process as a case study, Chem. Soc. Rev. 43(2014) 7326-7357.[3] U. Olsbye, S. Svelle, M. Bjorgen, P. Beato, T.V.M. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed. 51(2012) 2-24.[4] W. Vermeiren, J.P. Gilson, Impact of zeolites on the petroleum and petrochemical industry, Top. Catal. 52(2009) 1131-1161.[5] F. Chen, L. Ma, D. Cheng, X. Zhan, Synthesis of hierarchical porous zeolite and its performance in n-heptane cracking, Catal. Commun. 18(2012) 110-114.[6] G. Roohollahi, M. Kazemeini, A. Mohammadrezaee, R. Golhosseini, Chemical kinetic modeling of i-butane and n-butane catalytic cracking reaction over HZSM-5 zeolite, AIChE J. 28(2012) 2456-2465.[7] Q.F. Tan, Y. Fan, H.Y. Liu, T.C. Song, G. Shi, B.J. Shen, X.J. Bao, Bimodal micromesoporous aluminosilicates for heavy oil cracking:Porosity tuning and catalytic properties, AIChE J. 54(2008) 1850-1859.[8] R. Van Borm, M.F. Reyniers, G.B. Marin, Catalytic cracking of alkenes on FAU:Singleevent microkinetic modeling including acidity descriptors, AIChE J. 58(2012) 2202-2215.[9] M.Á. Gonzalez-Borja, D.E. Resasco, Reaction pathways in the liquid phase alkylation of biomass-derived phenolic compounds, AIChE J. 61(2015) 598-609.[10] K.P. de Jong, J. Zecevic, H. Friedrich, P.E. de Jongh, M. Bulut, S. van Donk, R. Kenmogne, A. Finiels, V. Hulea, F. Fajula, Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts, Angew. Chem. Int. Ed. 49(2010) 10074-10078.[11] S.L.C. Moors, K. De Wispelaere, J. Van der Mynsbrugge, M. Waroquier, V. Van Speybroeck, Molecular dynamics kinetic study on the zeolite-catalyzed benzene methylation in ZSM-5, ACS Catal. 3(2013) 2556-2567.[12] N. Zhu, Y. Liu, Y. Wang, F. Chen, X. Zhan, Kinetic models for the coke combustion on deactivated ZSM-5/MOR derived from n-heptane cracking, Ind. Eng. Chem. Res. 49(2010) 89-93.[13] K. Kim, R. Ryoo, H. Jang, M. Choi, Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences, J. Catal. 288(2012) 115-123.[14] M.E. Davis, R.F. Lobo, Zeolite and molecular sieve synthesis, Chem. Mater. 4(1992) 756-768.[15] S. Schallmoser, T. Ikuno, M.F. Wagenhofer, R. Kolvenbach, G.L. Haller, M. SanchezSanchez, J.A. Lercher, Impact of the local environment of Bronsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking, J. Catal. 316(2014) 93-102.[16] G.T. Kokotailo, S.L. Lawton, D.H. Olson, Structure and synthetic ZSM-5, Nature 272(1978) 437-438.[17] C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time, Chem. Rev. 103(2003) 663-701.[18] W. Yu, L. Deng, P. Yuan, D. Liu, W. Yuan, F. Chen, Preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance for benzene adsorption:The effects of desilication, Chem. Eng. J. 270(2015) 450-458.[19] R.L. Smith, W.A. Slawiński, A. Lind, D.S. Wragg, J.H. Cavka, B. Arstad, H. Fjellvag, M.P. Attfield, D. Akporiaye, M.W. Anderson, Nanoporous intergrowths:How crystal growth dictates phase composition and hierarchical structure in the CHA/AEI system, Chem. Mater. 27(2015) 4205-4215.[20] M. Razavian, S. Fatemi, Synthesis and application of ZSM-5/SAPO-34 and SAPO-34/ZSM-5 composite systems for propylene yield enhancement in propane dehydrogenation process, Microporous Mesoporous Mater. 201(2015) 176-189.[21] H.J. Chae, Y.H. Song, K.E. Jeong, C.U. Kim, S.Y. Jeong, Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction, J. Phys. Chem. Solids 71(2010) 600-603.[22] C. Duan, X. Zhang, R. Zhou, Y. Hua, J. Chen, L. Zhang, Hydrothermally synthesized HZSM-5/SAPO-34 composite zeolite catalyst for ethanol conversion to propylene, Catal. Lett. 141(2011) 1821-1827.[23] H.J. Zhang, X.C. Meng, Y.D. Li, Y.S. Lin, MCM-41 overgrown on Y composite zeolite as support of Pd-Pt catalysts for hydrogenation of polyaromatic compounds, Ind. Eng. Chem. Res. 46(2007) 4186-4192.[24] H.L. Chen, B.J. Shen, H.F. Pan, In situ formation of ZSM-5 in NaY gel and characterization of ZSM-5/Y composite zeolite, Chem. Lett. 8(2003) 726-727.[25] N. Zhu, Y. Wang, D. Cheng, F. Chen, X. Zhan, Experimental evidence for the enhanced cracking activity of n-heptane over steamed ZSM-5/mordenite composite zeolites, Appl. Catal. A Gen. 362(2009) 26-33.[26] M. Nielsen, R.Y. Brogaard, H. Falsig, P. Beato, O. Swang, S. Svelle, Kinetics of zeolite dealumination:Insights from H-SSZ-13, ACS Catal. 5(2015) 7131-7139.[27] R. Brosius, P.J. Kooyman, J.C.Q. Fletcher, Selective formation of linear alkanes from nhexadecane primary hydrocracking in shape-selective MFI zeolites by competitive adsorption of water, ACS Catal. 6(2016) 7710-7715.[28] A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Prieto, J. Bilbao, Role of reaction-medium water on the acidity deterioration of a HZSM-5 zeolite, Ind. Eng. Chem. Res. 43(2004) 5042-5048.[29] C.S. Triantafillidis, A.G. Vlessidis, N.P. Evmiridis, Dealuminated H-Y zeolites:Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites, Ind. Eng. Chem. Res. 39(2000) 307-319.[30] A. Yamaguchi, D. Jin, T. Ikeda, K. Sato, N. Hiyoshi, T. Hanaoka, F. Mizukami, M. Shirai, Deactivation of ZSM-5 zeolite during catalytic steam cracking of n-hexane, Fuel Process. Technol. 126(2014) 343-349.[31] G.M. Tonetto, M.L. Ferreira, J.A. Atias, H.I. de Lasa, Effect of steaming treatment in the structure and reactivity of FCC catalysts, AIChE J. 52(2006) 754-768.[32] S.M.T. Almutairi, B. Mezari, E.A. Pidko, P.C.M.M. Magusin, E.J.M. Hensen, Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite, J. Catal. 307(2013) 194-203.[33] S. Malola, S. Svelle, F.L. Bleken, O. Swang, Detailed reaction paths for zeolite dealumination and desilication from density functional calculations, Angew. Chem. Int. Ed. 51(2012) 652-655.[34] S. Sombatchaisak, P. Praserthdam, C. Chaisuk, J. Panpranot, An alternative correlation equation between particle size and structure stability of H-Y zeolite under hydrothermal treatment conditions, Ind. Eng. Chem. Res. 43(2004) 4066-4072.[35] S.M. Maier, A. Jentys, J.A. Lercher, Steaming of zeolite BEA and its effect on acidity:A comparative NMR and IR spectroscopic study, J. Phys. Chem. C 115(2011) 8005-8013.[36] Q.L. Wang, G. Giannetto, M. Torrealba, G. Perot, C. Kappenstein, M. Guisnet, Dealumination of zeolites Ⅱ. Kinetic study of the dealumination by hydrothermal treatment of a NH4NaY zeolite, J. Catal. 130(1991) 459-470.[37] A. Corma, C. Corell, V. Fornes, W. Kolodziejski, J. Perez-Pariente, Infrared spectroscopy, thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure, and stability of zeolite MCM-22, Zeolites 15(1995) 576-582.[38] P.A. Jacobs, J.B. Uytterhoeven, Assignment of the hydroxyl bands in the infrared spectra of zeolites X and Y, J. Chem. Soc. Faraday Trans. 69(1973) 359-372.[39] C. Yang, Q.H. Xu, States of aluminum in zeolite beta and influence of acidic or basic medium, Zeolites 19(1997) 404-410.[40] Y. Oumi, R. Mizuno, K. Azuma, S. Nawata, T. Fukushima, T. Uozumi, T. Sano, Reversibility of dealumination-realumination process of BEA zeolite, Zeolites 49(2001) 103-109.[41] A.G. Pelmenschikov, E.A. Paukshtis, M.O. Edisherashvili, G.M. Zhidomirov, On the Loewenstein rule and mechanism of zeolite dealumination, J. Phys. Chem. 96(1992) 7051-7055.[42] G. Engelhardt, U. Lohse, V. Patzelova, M. Magi, E. Lippmaa, High-resolution Si-29 n.m.r. of dealuminated Y-zeolites. 1. The dependence of the extent of dealumination on the degree of ammonium exchange and the temperature and water-vapor pressure of the thermochemical treatment, Zeolites 3(1983) 233-238.[43] Q.L. Wang, G. Giannetto, M. Guisnet, Dealumination of zeolites Ⅲ. Effect of extraframework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking, J. Catal. 130(1991) 471-482.[44] G. Engelhardt, U. Lohse, V. Patzelova, M. Magi, E. Lippmaa, High-resolution Si-29 n.m.r. of dealuminated Y-zeolites. 2. Silicon, aluminum ordering in the tetrahedral zeolite lattice, Zeolites 3(1983) 239-243. |