Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (3): 545-550.DOI: 10.1016/j.cjche.2017.11.009
• Catalysis, kinetics and reaction engineering • Previous Articles Next Articles
Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaoli Zhan
Received:
2017-05-25
Revised:
2017-11-13
Online:
2018-04-18
Published:
2018-03-28
Contact:
Dangguo Cheng
Supported by:
Supported by the National Key Research and Development Program of China (2016YFA0202900), the National Natural Science Foundation of China (91434123, 21622606), Zhejiang Provincial Natural Science Foundation of China (LR18B060001) and the Fundamental Research Funds for the Central Universities.
Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaoli Zhan
通讯作者:
Dangguo Cheng
基金资助:
Supported by the National Key Research and Development Program of China (2016YFA0202900), the National Natural Science Foundation of China (91434123, 21622606), Zhejiang Provincial Natural Science Foundation of China (LR18B060001) and the Fundamental Research Funds for the Central Universities.
Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaoli Zhan. Dealumination kinetics of composite ZSM-5/mordenite zeolite during steam treatment: An in-situ DRIFTS study[J]. Chin.J.Chem.Eng., 2018, 26(3): 545-550.
Xiaoxiao Zhang, Dangguo Cheng, Fengqiu Chen, Xiaoli Zhan. Dealumination kinetics of composite ZSM-5/mordenite zeolite during steam treatment: An in-situ DRIFTS study[J]. Chinese Journal of Chemical Engineering, 2018, 26(3): 545-550.
[1] V. Van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R.G. Bell, C.R.A. Catlow, Advances in theory and their application within the field of zeolite chemistry, Chem. Soc. Rev. 44(2015) 7044-7111. [2] V. Van Speybroeck, K. De Wispelaere, J. Van der Mynsbrugge, M. Vandichel, K. Hemelsoet, M. Waroquier, First principle chemical kinetics in zeolites:The methanol-to-olefin process as a case study, Chem. Soc. Rev. 43(2014) 7326-7357. [3] U. Olsbye, S. Svelle, M. Bjorgen, P. Beato, T.V.M. Janssens, F. Joensen, S. Bordiga, K.P. Lillerud, Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity, Angew. Chem. Int. Ed. 51(2012) 2-24. [4] W. Vermeiren, J.P. Gilson, Impact of zeolites on the petroleum and petrochemical industry, Top. Catal. 52(2009) 1131-1161. [5] F. Chen, L. Ma, D. Cheng, X. Zhan, Synthesis of hierarchical porous zeolite and its performance in n-heptane cracking, Catal. Commun. 18(2012) 110-114. [6] G. Roohollahi, M. Kazemeini, A. Mohammadrezaee, R. Golhosseini, Chemical kinetic modeling of i-butane and n-butane catalytic cracking reaction over HZSM-5 zeolite, AIChE J. 28(2012) 2456-2465. [7] Q.F. Tan, Y. Fan, H.Y. Liu, T.C. Song, G. Shi, B.J. Shen, X.J. Bao, Bimodal micromesoporous aluminosilicates for heavy oil cracking:Porosity tuning and catalytic properties, AIChE J. 54(2008) 1850-1859. [8] R. Van Borm, M.F. Reyniers, G.B. Marin, Catalytic cracking of alkenes on FAU:Singleevent microkinetic modeling including acidity descriptors, AIChE J. 58(2012) 2202-2215. [9] M.Á. Gonzalez-Borja, D.E. Resasco, Reaction pathways in the liquid phase alkylation of biomass-derived phenolic compounds, AIChE J. 61(2015) 598-609. [10] K.P. de Jong, J. Zecevic, H. Friedrich, P.E. de Jongh, M. Bulut, S. van Donk, R. Kenmogne, A. Finiels, V. Hulea, F. Fajula, Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts, Angew. Chem. Int. Ed. 49(2010) 10074-10078. [11] S.L.C. Moors, K. De Wispelaere, J. Van der Mynsbrugge, M. Waroquier, V. Van Speybroeck, Molecular dynamics kinetic study on the zeolite-catalyzed benzene methylation in ZSM-5, ACS Catal. 3(2013) 2556-2567. [12] N. Zhu, Y. Liu, Y. Wang, F. Chen, X. Zhan, Kinetic models for the coke combustion on deactivated ZSM-5/MOR derived from n-heptane cracking, Ind. Eng. Chem. Res. 49(2010) 89-93. [13] K. Kim, R. Ryoo, H. Jang, M. Choi, Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences, J. Catal. 288(2012) 115-123. [14] M.E. Davis, R.F. Lobo, Zeolite and molecular sieve synthesis, Chem. Mater. 4(1992) 756-768. [15] S. Schallmoser, T. Ikuno, M.F. Wagenhofer, R. Kolvenbach, G.L. Haller, M. SanchezSanchez, J.A. Lercher, Impact of the local environment of Bronsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking, J. Catal. 316(2014) 93-102. [16] G.T. Kokotailo, S.L. Lawton, D.H. Olson, Structure and synthetic ZSM-5, Nature 272(1978) 437-438. [17] C.S. Cundy, P.A. Cox, The hydrothermal synthesis of zeolites:History and development from the earliest days to the present time, Chem. Rev. 103(2003) 663-701. [18] W. Yu, L. Deng, P. Yuan, D. Liu, W. Yuan, F. Chen, Preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance for benzene adsorption:The effects of desilication, Chem. Eng. J. 270(2015) 450-458. [19] R.L. Smith, W.A. Slawiński, A. Lind, D.S. Wragg, J.H. Cavka, B. Arstad, H. Fjellvag, M.P. Attfield, D. Akporiaye, M.W. Anderson, Nanoporous intergrowths:How crystal growth dictates phase composition and hierarchical structure in the CHA/AEI system, Chem. Mater. 27(2015) 4205-4215. [20] M. Razavian, S. Fatemi, Synthesis and application of ZSM-5/SAPO-34 and SAPO-34/ZSM-5 composite systems for propylene yield enhancement in propane dehydrogenation process, Microporous Mesoporous Mater. 201(2015) 176-189. [21] H.J. Chae, Y.H. Song, K.E. Jeong, C.U. Kim, S.Y. Jeong, Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction, J. Phys. Chem. Solids 71(2010) 600-603. [22] C. Duan, X. Zhang, R. Zhou, Y. Hua, J. Chen, L. Zhang, Hydrothermally synthesized HZSM-5/SAPO-34 composite zeolite catalyst for ethanol conversion to propylene, Catal. Lett. 141(2011) 1821-1827. [23] H.J. Zhang, X.C. Meng, Y.D. Li, Y.S. Lin, MCM-41 overgrown on Y composite zeolite as support of Pd-Pt catalysts for hydrogenation of polyaromatic compounds, Ind. Eng. Chem. Res. 46(2007) 4186-4192. [24] H.L. Chen, B.J. Shen, H.F. Pan, In situ formation of ZSM-5 in NaY gel and characterization of ZSM-5/Y composite zeolite, Chem. Lett. 8(2003) 726-727. [25] N. Zhu, Y. Wang, D. Cheng, F. Chen, X. Zhan, Experimental evidence for the enhanced cracking activity of n-heptane over steamed ZSM-5/mordenite composite zeolites, Appl. Catal. A Gen. 362(2009) 26-33. [26] M. Nielsen, R.Y. Brogaard, H. Falsig, P. Beato, O. Swang, S. Svelle, Kinetics of zeolite dealumination:Insights from H-SSZ-13, ACS Catal. 5(2015) 7131-7139. [27] R. Brosius, P.J. Kooyman, J.C.Q. Fletcher, Selective formation of linear alkanes from nhexadecane primary hydrocracking in shape-selective MFI zeolites by competitive adsorption of water, ACS Catal. 6(2016) 7710-7715. [28] A.G. Gayubo, A.T. Aguayo, A. Atutxa, R. Prieto, J. Bilbao, Role of reaction-medium water on the acidity deterioration of a HZSM-5 zeolite, Ind. Eng. Chem. Res. 43(2004) 5042-5048. [29] C.S. Triantafillidis, A.G. Vlessidis, N.P. Evmiridis, Dealuminated H-Y zeolites:Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites, Ind. Eng. Chem. Res. 39(2000) 307-319. [30] A. Yamaguchi, D. Jin, T. Ikeda, K. Sato, N. Hiyoshi, T. Hanaoka, F. Mizukami, M. Shirai, Deactivation of ZSM-5 zeolite during catalytic steam cracking of n-hexane, Fuel Process. Technol. 126(2014) 343-349. [31] G.M. Tonetto, M.L. Ferreira, J.A. Atias, H.I. de Lasa, Effect of steaming treatment in the structure and reactivity of FCC catalysts, AIChE J. 52(2006) 754-768. [32] S.M.T. Almutairi, B. Mezari, E.A. Pidko, P.C.M.M. Magusin, E.J.M. Hensen, Influence of steaming on the acidity and the methanol conversion reaction of HZSM-5 zeolite, J. Catal. 307(2013) 194-203. [33] S. Malola, S. Svelle, F.L. Bleken, O. Swang, Detailed reaction paths for zeolite dealumination and desilication from density functional calculations, Angew. Chem. Int. Ed. 51(2012) 652-655. [34] S. Sombatchaisak, P. Praserthdam, C. Chaisuk, J. Panpranot, An alternative correlation equation between particle size and structure stability of H-Y zeolite under hydrothermal treatment conditions, Ind. Eng. Chem. Res. 43(2004) 4066-4072. [35] S.M. Maier, A. Jentys, J.A. Lercher, Steaming of zeolite BEA and its effect on acidity:A comparative NMR and IR spectroscopic study, J. Phys. Chem. C 115(2011) 8005-8013. [36] Q.L. Wang, G. Giannetto, M. Torrealba, G. Perot, C. Kappenstein, M. Guisnet, Dealumination of zeolites Ⅱ. Kinetic study of the dealumination by hydrothermal treatment of a NH4NaY zeolite, J. Catal. 130(1991) 459-470. [37] A. Corma, C. Corell, V. Fornes, W. Kolodziejski, J. Perez-Pariente, Infrared spectroscopy, thermoprogrammed desorption, and nuclear magnetic resonance study of the acidity, structure, and stability of zeolite MCM-22, Zeolites 15(1995) 576-582. [38] P.A. Jacobs, J.B. Uytterhoeven, Assignment of the hydroxyl bands in the infrared spectra of zeolites X and Y, J. Chem. Soc. Faraday Trans. 69(1973) 359-372. [39] C. Yang, Q.H. Xu, States of aluminum in zeolite beta and influence of acidic or basic medium, Zeolites 19(1997) 404-410. [40] Y. Oumi, R. Mizuno, K. Azuma, S. Nawata, T. Fukushima, T. Uozumi, T. Sano, Reversibility of dealumination-realumination process of BEA zeolite, Zeolites 49(2001) 103-109. [41] A.G. Pelmenschikov, E.A. Paukshtis, M.O. Edisherashvili, G.M. Zhidomirov, On the Loewenstein rule and mechanism of zeolite dealumination, J. Phys. Chem. 96(1992) 7051-7055. [42] G. Engelhardt, U. Lohse, V. Patzelova, M. Magi, E. Lippmaa, High-resolution Si-29 n.m.r. of dealuminated Y-zeolites. 1. The dependence of the extent of dealumination on the degree of ammonium exchange and the temperature and water-vapor pressure of the thermochemical treatment, Zeolites 3(1983) 233-238. [43] Q.L. Wang, G. Giannetto, M. Guisnet, Dealumination of zeolites Ⅲ. Effect of extraframework aluminum species on the activity, selectivity, and stability of Y zeolites in n-heptane cracking, J. Catal. 130(1991) 471-482. [44] G. Engelhardt, U. Lohse, V. Patzelova, M. Magi, E. Lippmaa, High-resolution Si-29 n.m.r. of dealuminated Y-zeolites. 2. Silicon, aluminum ordering in the tetrahedral zeolite lattice, Zeolites 3(1983) 239-243. |
[1] | Baoyu Liu, Feng Xiong, Jianwen Zhang, Manna Wang, Yi Huang, Yanxiong Fang, Jinxiang Dong. Enhanced ortho-selective t–butylation of phenol over sulfonic acid functionalized mesopore MTW zeolites [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 1-7. |
[2] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 205-211. |
[3] | Xiaolin Guo, Zhaoyang Zhang, Pengfei Xing, Shuai Wang, Yibing Guo, Yanxin Zhuang. Kinetic mechanism of copper extraction from methylchlorosilane slurry residue using hydrogen peroxide as oxidant [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 228-234. |
[4] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 242-252. |
[5] | Xun Tao, Fan Zhou, Xinlei Yu, Songling Guo, Yunfei Gao, Lu Ding, Guangsuo Yu, Zhenghua Dai, Fuchen Wang. Effect of carbon dioxide on oxy-fuel combustion of hydrogen sulfide: An experimental and kinetic modeling [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 105-117. |
[6] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 176-181. |
[7] | Tingjun Fu, Ran Wang, Kun Ren, Liangliang Zhang, Zhong Li. Intensified shape selectivity and alkylation reaction for the two-step conversion of methanol aromatization to p-xylene [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 240-250. |
[8] | Junyang Liu, Luming Wang, Yuhang Bian, Chunshan Li, Zengxi Li, Jie Li. Liquid-phase esterification of methacrylic acid with methanol catalyzed by cation-exchange resin in a fixed bed reactor: Experimental and kinetic studies [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 1-10. |
[9] | Wei Wang, Romain Lemaire, Ammar Bensakhria, Denis Luart. Thermogravimetric analysis and kinetic modeling of the co-pyrolysis of a bituminous coal and poplar wood [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 53-68. |
[10] | Bing Liu, Yingjiao Li, Moses Arowo, Guangwen Chu, Yong Luo, Liangliang Zhang, Haikui Zou, Baochang Sun. Sulfonation of 1, 4-diaminoanthraquinone leuco by chlorosulfonic acid: Kinetics and process intensification [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 163-169. |
[11] | Xinyu Liu, Hongliang Sheng, Song He, Chunhua Du, Yuansheng Ma, Chichi Ruan, Chunxiang He, Huaming Dai, Yajun Huang, Yuelei Pan. Insight into pyrolysis of hydrophobic silica aerogels: Kinetics, reaction mechanism and effect on the aerogels [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 266-281. |
[12] | Guangyuan Chen, Tong Zhou, Meng Zhang, Zhongxiang Ding, Zhikun Zhou, Yuanhui Ji, Haiying Tang, Changsong Wang. Effects of heavy metal ions Cu2+/Pb2+/Zn2+ on kinetic rate constants of struvite crystallization [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 10-16. |
[13] | Bin Gao, Junwen Chen, Qi Zuo, Hongyan Wang, Wenlin Li. The critical role of Zr in controlling the activity of Pd/Beta on the hydrogenation of phenol to cyclohexanone [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 79-87. |
[14] | Shujun Peng, Song Lei, Sisi Wen, Jian Xue, Haihui Wang. A Ruddlesden–Popper oxide as a carbon dioxide tolerant cathode for solid oxide fuel cells that operate at intermediate temperatures [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 25-32. |
[15] | Shiyong Xing, Yan Cui, Tiefeng Wang, Jinwei He, Minghan Han. Elucidating the effect of oxides on the zeolite catalyzed alkylation of benzene with 1-dodecene [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 126-135. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 1366
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||