[1] A. Wang, X. Kong, Review of recent progress of plasmonic materials and nanostructures for surface-enhanced Raman scattering, Materials 8(6) (2015) 3024.[2] X.M. Qian, S.M. Nie, Single-molecule and single-nanoparticle SERS:From fundamental mechanisms to biomedical applications, Chem. Soc. Rev. 37(5) (2008) 912-920.[3] J. Chao, W. Cao, S. Su, L. Weng, S. Song, C. Fan, L. Wang, Nanostructure-based surfaceenhanced Raman scattering biosensors for nucleic acids and proteins, J. Mater. Chem. B 4(10) (2016) 1757-1769.[4] W. Ji, B. Zhao, Y. Ozaki, Semiconductor materials in analytical applications of surface-enhanced Raman scattering, J. Raman Spectrosc. 47(1) (2016) 51-58.[5] X.X. Han, W. Ji, B. Zhao, Y. Ozaki, Semiconductor-enhanced Raman scattering:active nanomaterials and applications, Nano 9(15) (2017) 4847-4861.[6] J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering, Acc. Chem. Res. 42(6) (2009) 734-742.[7] S.L. Kleinman, E. Ringe, K.L. Wustholz, E. Phillips, K.A. Scheidt, G.C. Schatz, R.P.V. Duyne, Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues:Theory and experiment, J. Am. Chem. Soc. 133(11) (2011) 4115-4122.[8] W. Ji, W. Song, I. Tanabe, Y. Wang, B. Zhao, Y. Ozaki, Semiconductor-enhanced Raman scattering for highly robust SERS sensing:The case of phosphate analysis, Chem. Commun. 51(36) (2015) 7641-7644.[9] I. Alessandri, L.E. Depero, All-oxide Raman-active traps for light and matter:probing redox homeostasis model reactions in aqueous environment, Small 10(7) (2014) 1294-1298.[10] W. Song, W. Ji, S. Vantasin, I. Tanabe, B. Zhao, Y. Ozaki, Fabrication of a highly sensitive surface-enhanced Raman scattering substrate for monitoring the catalytic degradation of organic pollutants, J. Mater. Chem. A 3(25) (2015) 13556-13562.[11] L. Li, T. Hutter, A.S. Finnemore, F.M. Huang, J.J. Baumberg, S.R. Elliott, U. Steiner, S. Mahajan, Metal oxide nanoparticle mediated enhanced Raman scattering and its use in direct monitoring of interfacial chemical reactions, Nano Lett. 12(8) (2012) 4242-4246.[12] L.C. Perez, L. Kador, B. Peng, M. Thelakkat, Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR spectroscopies, J. Mater. Chem. B 110(17) (2006) 8723-8730.[13] A. Musumeci, D. Gosztola, T. Schiller, N.M. Dimitrijevic, V. Mujica, D. Martin, T. Rajh, SERS of semiconducting nanoparticles (TiO2 hybrid composites), J. Am. Chem. Soc. 131(17) (2009) 6040-6041.[14] W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, J. Zhang, Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy, Adv. Mater. 25(6) (2013) 928-933.[15] R. Livingstone, X. Zhou, M.C. Tamargo, J.R. Lombardi, L.G. Quagliano, F. Jeanmary, Surface enhanced Raman spectroscopy of pyridine on CdSe/ZnBeSe quantum dots grown by molecular beam epitaxy, J. Phys. Chem. C 114(1) (2010) 17460-17464.[16] D.Y. Qi, L.J. Lu, L.Z. Wang, J.L. Zhang, Improved SERS sensitivity on plasmon-free TiO2 photonic microarray by enhancing light-matter coupling, J. Am. Chem. Soc. 136(28) (2014) 9886-9889.[17] Z.L. Zhang, D.N. Li, Y.L. Mao, Effects of trap density on the surface-enhanced Raman scattering of molecules adsorbed on TiO2(Degussa P25), J. Raman Spectrosc. 43(12) (2012) 1920-1923.[18] S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, Effective visible light-activated B-doped and B,N-Codoped TiO2 photocatalysts, J. Am. Chem. Soc. 129(45) (2007) 13790-13791.[19] M. Liu, L. Piao, L. Zhao, S. Ju, Z. Yan, T. He, C. Zhou, W. Wang, Anatase TiO2 single crystals with exposed {001} and {110} facets:Facile synthesis and enhanced photocatalysis, Chem. Commun. 46(10) (2010) 1664-1666.[20] Y. Hou, C. Zheng, Z. Zhu, X. Wang, Microwave-assisted fabrication of porous hematite photoanodes for efficient solar water splitting, Chem. Commun. 52(42) (2016) 6888-6891.[21] L.B. Yang, M.D. Gong, X. Jiang, D. Yin, X.Y. Qin, B. Zhao, W.D. Ruanb, Investigation on SERS of different phase structure TiO2 nanoparticles, J. Raman Spectrosc. 46(3) (2015) 287-292.[22] L. Yang, X. Jiang, W. Ruan, B. Zhao, W. Xu, J.R. Lombardi, Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles:Charge-transfer contribution, J. Phys. Chem. C 112(50) (2008) 20095-20098.[23] X. Xue, W. Ji, Z. Mao, Z. Li, W. Ruan, B. Zhao, J.R. Lombardi, Effects of Mn doping on surface enhanced Raman scattering properties of TiO2 nanoparticles, Spectrochim. Acta A 95(2012) 213-217.[24] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science 293(5528) (2001) 269-271.[25] C.D. Valentin, G. Pacchioni, A. Selloni, Theory of carbon doping of titanium dioxide, Chem. Mater. 17(26) (2005) 6656-6665.[26] V. Kiran, S. Sampath, Enhanced Raman spectroscopy of molecules adsorbed on carbon-doped TiO2 obtained from titanium carbide:A visible-light-assisted renewable substrate, ACS Appl. Mater. Interfaces 4(8) (2012) 3818-3828.[27] S. Livraghi, M.C. Paganini, E. Giamello, A. Selloni, V.C. Di, G. Pacchioni, Origin of photoactivity of nitrogen-doped titanium dioxide under visible light, J. Am. Chem. Soc. 128(49) (2006) 15666-15671.[28] K. Nishijima, Y. Fujisawa, N. Murakami, T. Tsubota, T. Ohno, Development of an S-doped titania nanotube (TNT) site-selectively loaded with iron(Ⅲ) oxide and its photocatalytic activities, Appl. Catal. B 84(3-4) (2008) 584-590.[29] X. Cheng, X. Yu, Z. Xing, Enhanced photoelectric property and visible activity of nitrogen doped TiO2 synthesized from different nitrogen dopants, Appl. Surf. Sci. 268(2013) 204-208.[30] Y. Bai, W. Li, C. Liu, Z.H. Yang, X. Feng, X.H. Lu, K.Y. Chan, Stability of Pt nanoparticles and enhanced photocatalytic performance in mesoporous Pt-(anatase/TiO2(B)) nanoarchitecture, J. Mater. Chem. 19(38) (2009) 7055-7061.[31] M. He, X.H. Lu, X. Feng, L. Yu, Z.H. Yang, A simple approach to mesoporous fibrous titania from potassium dititanate, Chem. Commun. 19(2004) 2202-2203.[32] W. Li, C. Liu, Y.X. Zhou, Y. Bai, X. Feng, Z.H. Yang, L.H. Lu, X.H. Lu, K.Y. Chan, Enhanced photocatalytic activity in anatase/TiO2(B) core-shell nanofiber, J. Phys. Chem. C 112(51) (2008) 20539-20545.[33] Y. Cong, Z. Jinlong, F. Chen, A. Masakazu, D. He, Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (Ⅲ), J. Phys. Chem. C 111(28) (2007) 10618-10623.[34] E. Wang, P. Zhang, Y. Chen, Z. Liu, T. He, Y. Cao, Improved visible-light photocatalytic activity of titania activated by nitrogen and indium modification, J. Mater. Chem. 22(29) (2012) 14443-14449.[35] G. Xin, H. Pan, D. Chen, Z. Zhang, B. Wen, Synthesis and photocatalytic activity of N-doped TiO2 produced in a solid phase reaction, J. Phys. Chem. Solids 74(2) (2013) 286-290.[36] Z.G. Li, S. Miyake, Characteristics of N-doped TiO2 thin films grown on unheated glass substrate by inductively coupled plasma assisted dc reactive magnetron sputtering, Appl. Surf. Sci. 255(22) (2009) 9149-9153.[37] G. Zhang, X. Ding, F. He, X. Yu, J. Zhou, Y. Hu, J. Xie, Preparation and photocatalytic properties of TiO2-montmorillonite doped with nitrogen and sulfur, J. Phys. Chem. Solids 69(69) (2008) 1102-1106.[38] L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells 90(12) (2006) 1773-1787.[39] S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F. Geng, Z. Zhao, Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies, Nat. Commun. 6(2015) 7800.[40] J. Yu, H. Yu, B. Cheng, X. Zhao, J.C. Yu, W.-K. Ho, The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition, J. Phys. Chem. B 107(50) (2003) 13871-13879.[41] L. Jing, H. Fu, B. Wang, D. Wang, B. Xin, S. Li, J. Sun, Effects of Sn dopant on the photoinduced charge property and photocatalytic activity of TiO2 nanoparticles, Appl. Catal. B Environ. 62(3) (2006) 282-291. |