Chin.J.Chem.Eng. ›› 2018, Vol. 26 ›› Issue (7): 1545-1554.DOI: 10.1016/j.cjche.2018.05.012
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Yixin Zhang1, Jixiang Dong2, Fanhui Guo2, Xiaokai Chen2, Jianjun Wu2, Zhenyong Miao2
Received:2018-03-08
Revised:2018-05-22
Online:2018-08-16
Published:2018-07-28
Contact:
Jianjun Wu,E-mail address:jjuw@163.com
Supported by:Supported by the National Natural Science Foundation of China (51704292, 51774285), the China Postdoctoral Science Foundation (2016M601919), the National Key R&D Program of China (2016YFB0600401) and the Fundamental Research Funds for the Central Universities (2017QNA25, CPEUKF1704).
Yixin Zhang1, Jixiang Dong2, Fanhui Guo2, Xiaokai Chen2, Jianjun Wu2, Zhenyong Miao2
通讯作者:
Jianjun Wu,E-mail address:jjuw@163.com
基金资助:Supported by the National Natural Science Foundation of China (51704292, 51774285), the China Postdoctoral Science Foundation (2016M601919), the National Key R&D Program of China (2016YFB0600401) and the Fundamental Research Funds for the Central Universities (2017QNA25, CPEUKF1704).
Yixin Zhang, Jixiang Dong, Fanhui Guo, Xiaokai Chen, Jianjun Wu, Zhenyong Miao. Experimental study on the effects of drying methods on the stabilities of lignite[J]. Chin.J.Chem.Eng., 2018, 26(7): 1545-1554.
Yixin Zhang, Jixiang Dong, Fanhui Guo, Xiaokai Chen, Jianjun Wu, Zhenyong Miao. Experimental study on the effects of drying methods on the stabilities of lignite[J]. Chinese Journal of Chemical Engineering, 2018, 26(7): 1545-1554.
| [1] Y. Zhang, J. Wu, Y. Wang, Z. Miao, C. Si, X. Shang, N. Zhang, Effect of hydrothermal dewatering on the physico-chemical structure and surface properties of Shengli lignite, Fuel 164(2016) 128-133. [2] Z.K. Li, X.Y. Wei, H.L. Yan, Z.M. Zong, Insight into the structural features of Zhaotong lignite using multiple techniques, Fuel 153(2015) 176-182. [3] X. Feng, C. Zhang, P. Tan, X. Zhang, Q. Fang, G. Chen, Experimental study of the physicochemical structure and moisture readsorption characteristics of Zhaotong lignite after hydrothermal and thermal upgrading, Fuel 185(2016) 112-121. [4] J. Zhang, C. Zhang, Y. Qiu, L. Chen, P. Tan, G. Chen, Evaluation of moisture readsorption and combustion characteristics of a lignite thermally upgraded with the addition of asphalt, Energy Fuel 28(2014) 7680-7688. [5] X. Meng, M. Gao, R. Chu, Z. Miao, G. Wu, L. Bai, P. Liu, Y. Yan, P. Zhang, Construction of a macromolecular structural model of Chinese lignite and analysis of its lowtemperature oxidation behavior, Chin. J. Chem. Eng. 25(2017) 1314-1321. [6] X. Meng, M. Gao, R. Chu, G. Wu, Q. Fang, Multiple linear equation of pore structure and coal-oxygen diffusion on low temperature oxidation process of lignite, Chin. J. Chem. Eng. 24(2016) 818-823. [7] L. Jin, Y. Li, L. Lin, L. Zou, H. Hu, Drying characteristic and kinetics of Huolinhe lignite in nitrogen and methane atmospheres, Fuel 152(2015) 80-87. [8] B. Dai, L. Zhang, J.-F. Cui, A. Hoadley, L. Zhang, Integration of pyrolysis and entrainedbed gasification for the production of chemicals from Victorian brown coal - Process simulation and exergy analysis, Fuel Process. Technol. 155(2017) 21-31. [9] J. Yu, A. Tahmasebi, Y. Han, F. Yin, X. Li, A review on water in low rank coals:The existence, interaction with coal structure and effects on coal utilization, Fuel Process. Technol. 106(2013) 9-20. [10] H. Osman, S.V. Jangam, J.D. Lease, A.S. Mujumdar, Drying of low-rank coal (LRC) - A review of recent patents and innovations, Dry. Technol. 29(2011) 1763-1783. [11] C. Si, J. Wu, Y. Wang, Y. Zhang, X. Shang, Drying of low-rank coals:A review of fluidized bed technologies, Dry. Technol. 33(2015) 277-287. [12] H. Zhao, X. Geng, J. Yu, B. Xin, F. Yin, A. Tahmasebi, Effects of drying method on selfheating behavior of lignite during low-temperature oxidation, Fuel Process. Technol. 151(2016) 11-18. [13] H. Zhao, J. Yu, J. Liu, A. Tahmasebi, Experimental study on the self-heating characteristics of Indonesian lignite during low temperature oxidation, Fuel 150(2015) 55-63. [14] Y. Kadioglu, M. Varamaz, The effect of moisture content and air-drying on spontaneous combustion characteristics of two Turkish lignitesa, Fuel 82(2003) 1685-1693. [15] J.B. Murray, D.G. Evans, The brown-coal/water system:Part 3. Thermal dewatering of brown coal, Fuel 51(1972) 290-296. [16] H. Shui, H. Li, H. Chang, Z. Wang, Z. Gao, Z. Lei, S. Ren, Modification of subbituminous coal by steam treatment:Caking and coking properties, Fuel Process. Technol. 92(2011) 2299-2304. [17] K. Murakami, H. Shirato, Y. Nishiyama, In situ infrared spectroscopic study of the effects of exchanged cations on thermal decomposition of a brown coal, Fuel 76(1997) 655-661. [18] X. Jing, Z. Li, Y. Zhang, L. Chang, Changes of oxygen-containing groups during thermal treatment and their influences on moisture readsorption of lignite, Dry. Technol. 34(2015) 729-739. [19] M. Svabova, Z. Weishauptova, O. Pribyl, Water vapour adsorption on coal, Fuel 90(2011) 1892-1899. [20] J. Nishino, Adsorption of water vapor and carbon dioxide at carboxylic functional groups on the surface of coal, Fuel 80(2001) 757-764. [21] Y. Zhang, X. Jing, K. Jing, L. Chang, W. Bao, Study on the pore structure and oxygencontaining functional groups devoting to the hydrophilic force of dewatered lignite, Appl. Surf. Sci. 324(2015) 90-98. [22] C.E. Salmas, A.H. Tsetsekou, K.S. Hatzilyberis, G.P. Androutsopoulos, Evolution lignite mesopore structure during drying. Effect of temperature and heating time, Dry. Technol. 19(2001) 35-64. [23] R. Kaji, Y. Hishinuma, Y. Nakamura, Low temperature oxidation of coals:Effects of pore structure and coal composition, Fuel 64(1985) 297-302. [24] D.G. Evans, The brown-coal/water system:Part 4. Shrinkage on drying, Fuel 52(1973) 186-190. [25] S.C. Deevi, E.M. Suuberg, Physical changes accompanying drying of western US lignites, Fuel 66(1987) 454-460. [26] X. Li, H. Song, Q. Wang, C. Meesri, T. Wall, J. Yu, Experimental study on drying and moisture re-adsorption kinetics of an Indonesian low rank coal, J. Environ. Sci. Suppl. S127-S130(2009) S127-S130. [27] G.P. Androutsopoulos, T.J. Linardos, Effects of drying upon lignite macro-pore structure, Powder Technol. 47(1986) 9-15. [28] C. Bergins, Kinetics and mechanism during mechanical thermal dewatering of lignite, Fuel 82(2003) 355-364. [29] C. Vogt, T. Wild, C. Bergins, K. StrauB, J. Hulston, A.L. Chaffee, Mechanical/thermal dewatering of lignite. Part 4:Physico-chemical properties and pore structure during an acid treatment within the MTE process, Fuel 93(2012) 433-442. [30] J. Hulston, G. Favas, A.L. Chaffee, Physico-chemical properties of Loy Yang lignite dewatered by mechanical thermal expression, Fuel 84(2005) 1940-1948. [31] Y. Yang, X. Jing, Z. Li, X. Liu, Y. Zhang, L. Chang, Effect of drying conditions on moisture re-adsorption performance of dewatered lignite, Dry. Technol. 31(2013) 1430-1437. [32] A. Kücük, Y. Kadioglu, M.S. Gülaboglu, A study of spontaneous combustion characteristics of a Turkish lignite:Particle size, moisture of coal, humidity of air, Combust. Flame 133(2003) 255-261. [33] Y. Zhang, X. Chen, J. Wu, S. Wang, Z. Shao, Z. Miao, L. Xiao, Binderless briquetting of lignite by the mechanical thermal expression process, Int. J. Coal Prep. Util. (2017) 1-14. [34] X. Shang, K. Hou, J. Wu, Y. Zhang, J. Liu, J. Qi, The influence of mineral matter on moisture adsorption property of Shengli lignite, Fuel 182(2016) 749-753. [35] Y. Fei, A.A. Aziz, S. Nasir, W.R. Jackson, M. Marshall, J. Hulston, A.L. Chaffee, The spontaneous combustion behavior of some low rank coals and a range of dried products, Fuel 88(2009) 1650-1655. [36] H. Wang, C. You, Experimental investigation into the spontaneous ignition behavior of upgraded coal products, Energy Fuel 28(2014) 2267-2271. [37] W.S. Watanabe, D.-K. Zhang, The effect of inherent and added inorganic matter on low-temperature oxidation reaction of coal, Fuel Process. Technol. 74(2001) 145-160. [38] Y. Yu, J. Liu, R. Wang, J. Zhou, K. Cen, Effect of hydrothermal dewatering on the slurryability of brown coals, Energy Convers. Manag. 57(2012) 8-12. [39] J. Liao, Y. Fei, M. Marshall, A.L. Chaffee, L. Chang, Hydrothermal dewatering of a Chinese lignite and properties of the solid products, Fuel 180(2016) 473-480. [40] H. Choi, C. Thiruppathiraja, S. Kim, Y. Rhim, J. Lim, S. Lee, Moisture readsorption and low temperature oxidation characteristics of upgraded low rank coal, Fuel Process. Technol. 92(2011) 2005-2010. [41] B.B. Beamish, M.A. Barakat, J.D.S. George, Adiabatic testing procedures for determining the self-heating propensity of coal and sample ageing effects, Thermochim. Acta 362(2000) 79-87. [42] B.B. Beamish, M.A. Barakat, J.D.S. George, Spontaneous-combustion propensity of New Zealand coals under adiabatic conditions, Int. J. Coal Geol. 45(2001) 217-224. [43] B.B. Beamish, D.G. Blazak, Relationship between ash content and R70 self-heating rate of Callide Coal, Int. J. Coal Geol. 64(2005) 126-132. [44] Y. Fei, Y. Artanto, L. Giroux, M. Marshall, W.R. Jackson, J.A. MacPhee, J.-P. Charland, A.L. Chaffee, D.J. Allardice, Comparison of some physico-chemical properties of Victorian lignite dewatered under non-evaporative conditions, Fuel 85(2006) 1987-1991. [45] J. Hulston, A.L. Chaffee, C. Bergins, K. StrauB, Comparison of physico-chemical properties of various lignites treated by mechanical thermal expression, Coal Prep. 25(2005) 269-293. [46] Y. Artanto, A.L. Chaffee, Dewatering low rank coals by mechanical thermal expression (MTE) and its influence on organic carbon and inorganic removal, Coal Prep. 25(2005) 251-267. [47] Y. Wang, J. Zhou, L. Bai, Y. Chen, S. Zhang, X. Lin, Impacts of inherent O-containing functional groups on the surface properties of Shengli lignite, Energy Fuel 28(2014) 862-867. [48] Y. Zhang, J. Wu, Y. Wang, Z. Liu, X. Shang, B. Wang, S. Wang, Z. Miao, Energy consumption during dewatering process affected by carboxyl on coal surface, Dry. Technol. 34(2015) 645-650. [49] J. Zhang, T. Ren, Y. Liang, Z. Wang, A review on numerical solutions to self-heating of coal stockpile:Mechanism, theoretical basis, and variable study, Fuel 182(2016) 80-109. [50] B.B. Beamish, G.R. Hamilton, Effect of moisture content on the R70 self-heating rate of Callide coal, Int. J. Coal Geol. 64(2005) 133-138. [51] K. Zhang, C. You, Effect of upgraded lignite product water content on the propensity for spontaneous ignition, Energy Fuel 27(2013) 20-26. [52] H. Wang, B.Z. Dlugogorski, E.M. Kennedy, Role of inherent water in low temperature oxidation of coal, Combust. Sci. Technol. 175(2003) 253-270. [53] H. Wang, B.Z. Dlugogorski, E.M. Kennedy, Coal oxidation at low temperatures:Oxygen consumption, oxidation products, reaction mechanism and kinetic modelling, Prog. Energy Combust. Sci. 29(2003) 487-513. [54] W. Sujanti, D.-K. Zhang, A laboratory study of spontaneous combustion of coal the influence of inorganic matter and reactor size, Fuel 78(1999) 549-556. |
| [1] | Peipei Ai, Huiqing Jin, Jie Li, Xiaodong Wang, Wei Huang. Ultra-stable Cu-based catalyst for dimethyl oxalate hydrogenation to ethylene glycol [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 186-193. |
| [2] | Bingxiao Feng, Lining Hao, Chaoting Deng, Jiaqiang Wang, Hongbing Song, Meng Xiao, Tingting Huang, Quanhong Zhu, Hengjun Gai. A highly hydrothermal stable copper-based catalyst for catalytic wet air oxidation of m-cresol in coal chemical wastewater [J]. Chinese Journal of Chemical Engineering, 2023, 57(5): 338-348. |
| [3] | Xia Xiong, Zuohua Liu, Changyuan Tao, Yundong Wang, Fangqin Cheng, Hong Li. Reduced power consumption in stirred vessel with high solid loading by equipping punched baffles [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 203-214. |
| [4] | Tinghao Jia, Yunbo Yu, Qing Liu, Yao Yang, Ji-Jun Zou, Xiangwen Zhang, Lun Pan. Theoretical and experimental study on the inhibition of jet fuel oxidation by diarylamine [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 225-232. |
| [5] | Zida Ma, Yuxia Li, Mengmeng Jin, Xiaoqin Liu, Linbing Sun. Fabrication of adsorbents with enhanced CuI stability: Creating a superhydrophobic microenvironment through grafting octadecylamine [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 41-48. |
| [6] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 56-62. |
| [7] | Pascal Habimana, Yanjun Jiang, Jing Gao, Jean Bernard Ndayambaje, Osama M. Darwesh, Jean Pierre Mwizerwa, Xiaobing Zheng, Li Ma. Enhancing laccase stability and activity for dyes decolorization using ZIF-8@MWCNT nanocomposite [J]. Chinese Journal of Chemical Engineering, 2022, 48(8): 66-75. |
| [8] | Chunyu Zhang, Yan Sun, Xiaoyan Dong. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 48-53. |
| [9] | Fu Yang, Wenhao Li, Rui Ou, Yutong Lu, Xuexue Dong, Wenlong Tu, Wenjian Zhu, Xuyu Wang, Lulu Li, Aihua Yuan, Jianming Pan. Superb VOCs capture engineering carbon adsorbent derived from shaddock peel owning uncompromising thermal-stability and adsorption property [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 120-133. |
| [10] | Fei Tong, Jie Gong, Liang Yu, Ming Li, Lixiong Zhang. Transparent and anti-fogging AlPO4-5 films constructed by oblique oriented nano-flake crystals [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 332-340. |
| [11] | Shiqi Yang, Zhentao Wang, Qian Kong, Bin Li, Junfeng Wang. Visualization on electrified micro-jet instability from Taylor cone in electrohydrodynamic atomization [J]. Chinese Journal of Chemical Engineering, 2022, 44(4): 456-465. |
| [12] | Qingxia Xiong, Ying Ren, Yufei Xia, Guanghui Ma, Reiji Noda, Wei Ge. Molecular dynamics simulations of ovalbumin adsorption at squalene/water interface [J]. Chinese Journal of Chemical Engineering, 2022, 50(10): 369-378. |
| [13] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
| [14] | Huawei Zhu, Haifeng Yu, Zhaofeng Yang, Hao Jiang, Chunzhong Li. Tungsten and phosphate polyanion co-doping of Ni-ultrahigh cathodes greatly enhancing crystal structure and interface stability [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 144-151. |
| [15] | Wang Du, Liping Ma, Jing Yang, Wei Zhang, Ran Ao. Experimental and numerical simulation of lignite chemical looping gasification with phosphogypsum as oxygen carrier in a fluidized bed [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 197-207. |
| Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
|
Full text 89
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|
Abstract 823
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京公网安备 11010102001993号 
