[1] S.J. Malakooti, S.Z.S. Tonkaboni, M. Noaparast, D. Ardejani, R. Naseh, Characterisation of the Sarcheshmeh copper mine tailings, Kerman province, southeast of Iran, Environ. Earth Sci. 71(5) (2013)2267-2291.[2] S. Jannesar Malakooti, M. Noaparast, S.Z.S. Tonkaboni, F.D. Ardejani, E. Soleimani, E. Esmaeilzadeh, Mineralogical and geochemical studies on pyrite and chalcopyrite oxidations in the Sarcheshmeh copper mine tailings, International Mine Water Association Conference, Annual Conference 2012, Bunbury, Western Australia 2012, pp. 223-230.[3] H.Y. Guan, L.H. Xu, B. Zhou, X.W. Li, L. Ren, W. Zhai, Recycling utilization of the copper tailing resources in China, Met. Mine 10(2010) 185-188.[4] L.H. Xu, W.C. Li, S. Volodymyr, M. Liu, H. Wang, S.M. Bi, Y.B. Bi, Metal recovery and inorganic eco-materials from tailings by leaching-sintering processes, Mater. Manuf. Process. 23(8) (2008) 743-749.[5] M.M. Antonijevic, M.D. Dimitrijevic, Z.O. Stevanovic, S.M. Serbula, G.D. Bogdanovic, Investigation of the possibility of copper recovery from the flotation tailings by acid leaching, J. Hazard. Mater. 158(1) (2008)23-24.[6] A.S. Atkins, F.D. Pooley, The effects of bio-mechanisms on acidic mine drainage in coal mining, Mine Water Environ. 1(1) (1982) 31-44.[7] C.R. Canovas, M. Olias, J.M. Nieto, A.M. Sarmiento, J.C. Ceron, Hydrogeochemical characteristics of the Tinto and Odiel Rivers (SW Spain). Factors controlling metal contents, Sci. Total Environ. 373(1) (2007) 363-382.[8] C.C. Juan, Copper mine tailing disposal in northern Chile rocky shore:Enteromorpha compressa (Chlorophyta) as a sentinel species, Environ. Monit. Assess. 40(2) (1996) 171-184.[9] H.D.G. Turrer, A.E.C. Peres, Investigation on alternative depressants for iron ore flotation, Miner. Eng. 23(11) (2010) 1066-1069.[10] Z. Wang, Y. Qian, L.H. Xu, B. Dai, J.H. Xiao, K. Fu, Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant, Miner. Eng. 74(2015) 86-90.[11] H. Kuopanportti, T. Suorsa, O. Dahl, J. Niinimaki, A model of conditioning in the flotation of a mixture of pyrite and chalcopyrite ores, Int. J. Miner. Process. 59(4) (2000) 327-338.[12] M.N. Chandraprabha, K.A. Natarajan, J.M. Modak, Selective separation of pyrite and chalcopyrite by biomodulation, Colloids Surf. B:Biointerfaces 37(3) (2004) 93-100.[13] R.J. Pugh, Macromolecular organic depressants in sulphide flotation-A review, 1. Principles, types and applications, Int. J. Miner. Process. 25(1) (1989) 101-130.[14] S. Bulatovic, D.M. Wyslouzil, Selection and evaluation of different depressants systems for flotation of complex sulphide ores, Miner. Eng. 8(1) (1995) 63-76.[15] K.C. Corin, P.J. Harris, Investigation into the flotation response of a sulphide ore to depressant mixtures, Miner. Eng. 23(11) (2010) 915-920.[16] J.H. Chen, Y.Q. Li, Y. Chen, Cu-S flotation separation via the combination of sodium humate and lime in a low pH medium, Miner. Eng. 24(1) (2011) 58-63.[17] A.K. Darban, Possibility of sodium cyanide elimination from a flotation process, Adv. Environ. Agric. Sci. (2011) 189-193.[18] G. Ai, Y. Zhou, Y. Wang, A study on the combined depressant for the Cu-S separation in low alkaline medium and its depressing. Mechanism, Procedia Eng. 102(2015) 338-345.[19] A. Pacevski, E. Libowitzky, P. Zivkovic, R. Dimitrijevic, L. Cvetkovic, Copper-bearing pyrite from the Coka Marin polymetallic deposit, Serbia:Mineral inclusions or true solid-solution? Can. Mineral. 46(1) (2008)249-261.[20] H.K. Hansen, J.B. Yianatos, L.M. Ottosen, Speciation and leachability of copper in mine tailings from porphyry copper mining:Influence of particle size, Chemosphere 60(10) (2005) 1497-1503.[21] Y. Wei, R.F. Sandenbergh, Effects of grinding environment on the flotation of Rosh Pinah complex Pb/Zn ore, Miner. Eng. 20(3) (2007)264-272.[22] X.L. Zhang, X. Xu, Z.C. Wei, Effect of grinding fineness on ilmenite floatation, J. Kunming Metall. Coll. 26(5) (2010) 6-9.[23] C. Bazin, C. Fortin, D. Hodouin, J. Cayouette, Effect of fineness of grind on semi-batch flotation test results, Miner. Eng. 18(3) (2005) 367-370.[24] J. Shen, Z. Hou, C. Gao, Using bipolar membrane electrodialysis to synthesize di-quaternary ammonium hydroxide and optimization design by response surface methodology, Chin. J. Chem. Eng. 25(2017) 1176-1181.[25] B. Khongto, K. Laoteng, A. Tongta, Enhancing the production of gamma-linolenic acid in Hansenula polymorpha, by fed-batch fermentation using response surface methodology, Chem. Pap. 65(2) (2011) 124-131.[26] C. Wang, A. Wei, H. Wu, F. Qu, W. Chen, H. Liang, Application of response surface methodology to the chemical cleaning process of ultrafiltration membrane, Chin. J. Chem. Eng. 24(5) (2016) 651-657.[27] Y. Li, J. Chen, D. Kang, J. Guo, Depression of pyrite in alkaline medium and its subsequent activation by copper, Miner. Eng. 26(1) (2012) 64-69.[28] X.H. Wang, K.S.E. Forssber, The solution electrochemistry of sulfidexanthate-cyanide systems in sulfide mineral flotation, Miner. Eng. 9(5) (1996) 527-546.[29] Y.H. Hu, S.L. Zhang, G.Z. Qiu, J.D. Miller, Surface chemistry of activation of lime-depressed pyrite flotation, Trans. Nonferrous Metals Soc. China 10(6) (2000) 798-803.[30] G. Fairthorne, D. Fornasiero, J. Ralston, Solution properties of thionocarbamate collectors, Int. J. Miner. Process. 46(1) (1996) 137-153.[31] A.A. Helal, G.A. Murad, A.A. Helal, Characterization of different humic materials by various analytical techniques, Arab. J. Chem. 4(1) (2011) 51-54.[32] R.K. Rath, S. Subramanian, T. Pradeep, Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants, J. Colloid Interface Sci. 229(1) (2000) 82-91.[33] A.D. Budaeva, E.V. Zoltoev, V.D. Tikhova, N.V. Bodoev, Interaction of heavy metal ions with ammonium humates, Russ. J. Appl. Chem. 79(6) (2006) 920-923.[34] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, in:G.E. Muilenberg (Ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation 1979, pp. 57-76.[35] Y. Cai, Y. Pan, J. Xue, Q. Sun, G. Su, X. Li, Comparative XPS study between experimentally and naturally weathered pyrites, Appl. Surf. Sci. 255(21) (2009) 8750-8760.[36] M. Xie, W.H. Deng, Study on pyrite flotability and production practice, J. BGRIMM 1(2) (1992) 32-37.[37] W. Sun, Y. Zhang, W.L. Qin, Y.H. Hu, Activated flotation of pyrite once depressed by lime, J. Cent. S. Univ. (Sci. Technol.) 41(3) (2010) 813-818.[38] M. Montalti, D. Fornasiero, J. Ralston, UV-visible spectroscopic study of the kinetics of adsorption of ethyl xanthate on pyrite, J. Colloid Interface Sci. 143(2) (1991) 440-450.[39] A.P. Chandra, L. Puskar, D.J. Simpson, A.R. Gerson, Copper and xanthate adsorption onto pyrite surfaces:Implications for mineral separation through flotation, Int. J. Miner. Process. 114(2012) 16-26.[40] J.A. Curry, M.J.L. Ismay, G.J. Jameson, Mine operating costs and the potential impacts of energy and grinding, Miner. Eng. 56(56) (2014) 70-80. |